

Water quality standards for imidacloprid *Proposal for an update according to the Water Framework Directive*

RIVM Letter report 270006001/2014 C.E. Smit

Water quality standards for imidacloprid

Proposal for an update according to the Water Framework Directive

RIVM Letter report 270006001/2014 C.E. Smit

Colophon

© RIVM 2014

Parts of this publication may be reproduced, provided acknowledgement is given to: National Institute for Public Health and the Environment, along with the title and year of publication.

C.E. Smit

Contact: Els Smit Centrum voor Veiligheid van Stoffen en Producten els.smit@rivm.nl

This investigation has been performed by order and for the account of the Ministry of Infrastructure and the Environment, within the framework of the project "Chemical aspects of WFD and RPS"

This is a publication of:

National Institute for Public Health and the Environment P.O. Box 1 | 3720 BA Bilthoven The Netherlands www.rivm.nl/en

Publiekssamenvatting

Herziening waterkwaliteitsnormen voor imidacloprid

Het RIVM stelt voor om de waterkwaliteitsnorm voor het bestrijdingsmiddel imidacloprid te verlagen van 67 naar 8,3 nanogram per liter. Uit nieuwe onderzoeken blijkt dat de schadelijke effecten van imidacloprid op waterorganismen zich al bij lagere concentraties voordoen dan verwacht.

Probleemstof

Imidacloprid is een insecticide dat behoort tot de groep van neonicotinoïden. Het middel wordt op grote schaal gebruikt in de landbouw, maar ook in en om het huis, bijvoorbeeld in mierenlokdoosjes en vlooiendruppels. Neonicotinoïden staan volop in de belangstelling vanwege een mogelijke relatie met bijensterfte. Om die reden heeft de Europese Commissie eind vorig jaar besloten om het gebruik van imidacloprid in de teelt van een groot aantal gewassen te beperken. Imidacloprid is ook een probleemstof in oppervlaktewater en staat in Nederland hoog in de top-10 van normoverschrijdende stoffen.

Huidige norm beschermt onvoldoende

De huidige normen voor oppervlaktewater zijn in 2008 vastgesteld. Sinds die tijd zijn er veel nieuwe studies gepubliceerd naar de effecten van imidacloprid op organismen in water. Recent onderzoek toont aan dat vooral eendagsvliegen (haften) zeer gevoelig zijn voor imidacloprid. Deze studies maken duidelijk dat de huidige norm haften onvoldoende beschermt, en mogelijk ook andere groepen insecten. Het RIVM heeft daarom de beschikbare gegevens geëvalueerd en geconcludeerd dat de norm voor lange-termijn blootstelling in zoetwater moet worden verlaagd met een factor acht. De norm voor kortdurende piekblootstelling van 0,2 microgram per liter blijft hetzelfde.

Lagere concentraties zijn haalbaar

In januari 2014 heeft het College voor de toelating van gewasbeschermingsmiddelen en biociden (Ctgb) extra beperkingen opgelegd aan het gebruik van imidacloprid. Het afvalwater uit kassen moet worden gezuiverd en bij de bespuiting van gewassen in het veld moet worden voorkomen dat het insecticide overwaait naar het nabij gelegen water. Door deze maatregelen komt er minder imidacloprid in het oppervlaktewater terecht, wat de kans vergroot dat aan de nieuwe norm kan worden voldaan.

Het onderzoek is uitgevoerd in opdracht van het ministerie van Infrastructuur en Milieu.

Abstract

Revision of water quality standards for imidacloprid

RIVM proposes to lower the water quality standard for the pesticide imidacloprid from 67 to 8.3 nanogram per liter. Recent research shows that effects of imidacloprid on water organisms become apparent at lower concentrations than expected.

Problematic substance

Imidacloprid is a neonicotinoid insectide with a widespread use in agriculture, but it is also authorised for household uses such as ant or fly control. Neonicotinoids receive a lot of attention because of the presumed relationship with bee health decline. The European Commission decided last year to restrict the use of imidacloprid in a large number of crops. Imidacloprid is also known as a problematic substance from the viewpoint of water quality. It is ranked high in the top-10 of substances that exceed water quality standards for surface water in the Netherlands.

Sensitive aquatic organisms

The current water quality standards were set in 2008. A large number of studies on the effects of imidacloprid on water organisms have been published since then. Recent research shows that mayflies are particularly sensitive. The new data show that the current standard is under protective for mayflies and probably also for other insect groups. Therefore, RIVM evaluated the available data and concludes that an eight-fold lower standard for long-term exposure in freshwater is needed. The standard for short-term peak exposure of 0.2 microgram per liter can be maintained.

Lower concentrations are feasible

In January 2014, the Dutch board for the authorisation of plant protection products and biocides (Ctgb) restricted the use of imidacloprid. Treatment of discharge water from greenhouses is compulsory and further measures should be taken to reduce drift from treated fields to nearby surface waters. These measures will lead to lower emissions of imidacloprid to surface water and increase the chance that the new water quality standards will be met.

This research was carried out by order of the Dutch Ministry of Infrastructure and the Environment.

Contents

	Summary 6	
1 1.1 1.2 1.3 1.4	Introduction 7 Background of this report 7 Standards considered 7 Methodology 9 Status of the results 12	
2	Information on the substance 13	
2.1	Intended uses 13	
2.2	Substance identification 13	
2.3	Physico-chemical properties 14	
2.4	Fate and behaviour 14	
2.5	Bioconcentration and biomagnification 15	
3	Human toxicology and ecotoxicological effect data 16	
3.1	Human toxicological threshold limits and carcinogenicity 16	
3.2	Ecotoxicological effect data 16	
4	Derivation of water quality standards 22	
4.1	Pooling of freshwater and marine data 22	
4.2	Derivation of the MAC-EQS 22	
4.3	Derivation of the AA-EQS 28	
4.4	NC _{fw} and NC _{sw} 31	
4.5	SRC _{fw, eco} and SRC _{sw, eco} 32	
4.6	$QS_{dw, hh}$ – surface water for abstraction of drinking water 32	
4.7	Implications of the proposed values for water quality assessment	32
5	Conclusions 33	
	Acknowledgements 34	
	References 35	
	List of terms and abbreviations 42	
	Appendix 1. Detailed ecotoxicity data 44	
	Appendix 2. Evaluation of micro- and mesocosmstudies 63	
	Appendix 3. ETX output 87	

Summary

In this report a proposal is made for environmental quality standards (EQSs) for imidacloprid in surface water. Imidacloprid is a neonicotinoid insecticide that is included in Dutch national legislation under the Water Framework Directive (WFD). The current EQSs were derived by RIVM in 2008 and based on these values imidacloprid belongs to the top-10 of plant protection products (PPP) that pose a problem concerning water quality in the Netherlands.

During the past years, a large number of new aquatic ecotoxicity studies have been published. Most probably the attention for imidacloprid is related with the ongoing debate on the presumed relationship between neonicotinoid use and bee health decline worldwide. The new data include long-term studies on aquatic insects, which at the time of standard derivation in 2008 were not available. Recent information shows that mayflies are particularly sensitive, indicating that the current water quality standard for long-term exposure might not be protective for the aquatic ecosystem. The Dutch Ministry of Infrastructure and the Environment ordered RIVM to update the data evaluation and propose new standards for imidacloprid.

The WFD distinguishes two types of water quality standards: a long-term standard, expressed as an annual average concentration (AA-EQS) and normally based on chronic toxicity data, which should protect the ecosystem against adverse effects resulting from long-term exposure; and a standard for short-term concentration peaks, referred to as a maximum acceptable concentration EQS (MAC-EQS). The available literature concerning ecotoxicity to water organisms was (re-)evaluated, including several micro- and mesocosm studies.

From the data it appears that large differences in sensitivity exist among aquatic species, even within one taxonomic group. Overall midges and mayflies appear to be the most sensitive organism groups. Because a relatively large number of acute and chronic data is available, statistical extrapolation techniques were applied for the derivation of standards. Semi-field data were considered as well. Based on the new information the current MAC-EQS of 0.2 μ g/L can be maintained. The newly proposed AA-EQS is 8.3 ng/L.

Because the proposed AA-EQS is a factor of eight lower than the current standard, this would potentially lead to a higher frequency and/or number of locations at which the standards are exceeded in the Netherlands. On the other hand, recent restrictions on field and greenhouses applications of imidacloprid should result in decreased emissions to surface water. Future monitoring data will ultimately reveal the overall impact of the newly proposed standard on the assessment of Dutch surface water quality.

1 Introduction

1.1 Background of this report

In this report a proposal is made for environmental quality standards (EQSs) for imidacloprid in surface water. Imidacloprid is a neonicotinoid insecticide that is included in Dutch national legislation in the context of the Water Framework Directive (WFD). The compound is listed as a specific pollutant in the Dutch decree on WFD-monitoring (*Regeling monitoring Kaderrichtlijn water*). Under the WFD, two types of EQSs are derived to cover both long- and short-term effects resulting from exposure:

- an annual average concentration (AA-EQS) to protect against the occurrence of prolonged exposure, and
- a maximum acceptable concentration (MAC-EQS) to protect against possible effects from short term concentration peaks.

In Dutch, these two WFD-standards are indicated as 'JG-MKN' and 'MAC-MKN', respectively¹. The current AA-EQS for imidacloprid is 0.067 µg/L, the MAC-EQS is 0.2 µg/L [1]. These values were derived by RIVM in 2008 [2]. Based on these EQSs, imidacloprid belongs to the top-10 of plant protection products (PPP) that pose a problem concerning water quality in the Netherlands [3,4]. During the past years, a large number of new aquatic ecotoxicity studies have been published, which apparently has to do with the ongoing debate on the presumed relationship between neonicotinoid use and bee health decline worldwide. The new data include studies on aquatic insects, for which at the time of standard derivation in 2008 only few data were available from shortterm studies only. Recent information [5] indicates that for mayflies long-term exposure may result in effects at concentrations that are lower than the present AA-EQS of 0.067 μg/L. This indicates that the current water quality standard is not protective for long-term exposure to imidacloprid. Moreover, the most sensitive taxa were only poorly represented in the study which was used as a basis for the MAC-EQS, indicating that re-evaluation of this standard is needed as well. In view of the above, the Dutch Ministry of Infrastructure and the Environment assigned RIVM to update the data evaluation for imidacloprid and propose new values for the AA- and MAC-EQS.

1.2 Standards considered

As indicated above, this report primarily focuses on the WFD-water quality standards. Next to the AA-EQS and MAC-EQS, the WFD also considers a standard for surface water used for drinking water abstraction. Below, a short explanation on the respective standards is provided and the terminology is summarised in Table 2. Note that all standards refer to dissolved concentrations in water.

- Annual Average EQS (AA-EQS) – a long-term standard, expressed as an annual average concentration (AA-EQS) and normally based on chronic toxicity data which should protect the ecosystem against adverse effects resulting from long-term exposure.

The AA-EQS should not result in risks due to secondary poisoning and/or risks for human health aspects. These aspects are therefore also

¹ JG = Jaargemiddelde = annual average; MKN = milieukwaliteitsnorm = environmental quality standard.

addressed in the AA-EQS, when triggered by the characteristics of the compound (i.e. human toxicology and/or potential to bioaccumulate). Separate AA-EQSs are derived for the freshwater and saltwater environment.

- Maximum Acceptable Concentration EQS (MAC-EQS) for aquatic ecosystems the concentration protecting aquatic ecosystems from effects due to short-term exposure or concentration peaks. The MAC-EQS is derived for freshwater and saltwater ecosystems, and is based on direct ecotoxicity only.
- Quality standard for surface water that is used for drinking water abstraction ($QS_{dw, \, hh}$). This is the concentration in surface water that meets the requirements for use of surface water for drinking water production. The $QS_{dw, \, hh}$ specifically refers to locations that are used for drinking water abstraction.

The quality standards in the context of the WFD refer to the absence of any impact on community structure of aquatic ecosystems. Hence, not the potential to recover after transient exposure, but long-term undisturbed function is the protection objective under the WFD. Recovery in a test situation, after a limited exposure time, is therefore not included in the derivation of the AA- and MAC-EQS.

Table 1. Overview of the different types of WFD-quality standards for freshwater (fw), saltwater (sw) and surface water used for drinking water (dw) considered

in this report.

Type of QS	Protection aim	Terminology for temporary standard ¹	Notes	Final selected quality standard
long- term	Water organisms Predators (secondary poisoning) Human health (consumption of fishery products)	$\begin{array}{c} QS_{fw,\;eco} \\ QS_{sw,\;eco} \\ QS_{biota,\;secpois,\;fw} \\ QS_{biota,\;secpois,\;sw} \\ \\ QS_{fw,\;secpois} \\ QS_{sw,\;secpois} \\ \\ QS_{biota,\;hh\;food} \\ \\ \\ QS_{water,\;hh\;food} \end{array}$	Refers to direct ecotoxicity QS for fresh- or saltwater expressed as concentration in biota, converted to corresponding concentration in water QS for water expressed as concentration in biota, converted to corresponding concentration in water; valid for fresh- and saltwater	lowest water- based QS is selected as AA- EQS _{fw} and AA-EQS _{sw}
short- term	Water organisms	MAC-QS _{fw, eco} MAC-QS _{sw, eco}	Refers to direct ecotoxicity; check with QS _{fw, eco} and QS _{sw, eco}	MAC-EQS _{fw} MAC-EQS _{sw}
dw	Human health (drinking water)		Relates to surface water used for abstraction of drinking water	QS _{dw, hh}

^{1:} Note that the subscript "fw" refers to the freshwater, "sw" to saltwater; subscript "water" is used for all waters, including marine.

For the purpose of national water quality policy, e.g. discharge permits or specific policy measures, two additional risk limits are derived:

- Negligible Concentration (NC) the concentration in fresh- and saltwater at which effects to ecosystems are expected to be negligible and functional properties of ecosystems are safeguarded fully. It defines a safety margin which should exclude combination toxicity. The NC is derived by dividing the AA-EQS by a factor of 100, in line with [6,7].
- Serious Risk Concentration for ecosystems (SRC_{eco}) the concentration in water at which possibly serious ecotoxicological effects are to be expected. The SRC_{eco} is valid for the freshwater and saltwater compartment.

1.3 Methodology

1.3.1 Guidance documents

The methodology is in accordance with the European guidance document for derivation of environmental quality standards under the WFD [8]. This document is further referred to as the WFD-quidance. Additional guidance for derivation of risk limits that are specific for the Netherlands, such as the NC and SRC, can be found in [9]. This guidance document was prepared for derivation of environmental risk limits in the context of the project "International and national environmental quality standards for substances in the Netherlands (INS)", and is further referred to as the INS-guidance. Similar to the WFD-guidance, the INSquidance is based on the Technical Guidance Document (TGD), issued by the European Commission and developed in support of the risk assessment of new notified chemical substances, existing substances and biocides [10] and on the Manual for the derivation of Environmental Quality Standards in accordance with the Water Framework Directive [11]. The WFD-guidance also takes into account the most recent guidance developed under REACH [12]. It should be noted that the WFD-guidance deviates from the INS-guidance for some aspects. This specifically applies to the treatment of data for freshwater and marine species (see section 4.1) and the derivation of the MAC (see section 4.2), and also holds for the QS for surface waters intended for the abstraction of drinking water (QS_{dw, hh}, see section 4.6). Where applicable, the WFD-guidance is followed and the INS-guidance is used for situations which are not covered by the former. In addition to these, additional guidance was used that was developed for the preregistration and post-registration environmental risk assessment procedures of PPPs in the Netherlands [13,14].

1.3.2 Data sources

For the derivation of the quality standards for imidacloprid, the 2008-report [2] was taken as a starting point. The data covered in this report include the Draft Assessment Report prepared within the context of the former European pesticides directive 91/414/EEC and open literature until 2007. Additional new literature published from 2007-2013 was collected using SCOPUS (http://www.scopus.com/), using "imidacloprid and aquatic" as search string. The Competent Authority Report (CAR) prepared for the evaluation of imidacloprid under the former European biocides directive 98/8/EC was also consulted [15]. The draft EQS-derivation for imidacloprid of the Swiss Oekotoxzentrum, published in May, 2013 [16], was used as a check for any missed references and other relevant information. The registration holders in the Netherlands for PPP based on imidacloprid (Bayer Crop Science and Makhteshim Agan) were informed on the planned update and asked to send in data. Bayer

made use of this opportunity by submitting the draft report of an outdoor enclosure study with a mayfly species (see 3.2.2 and Appendix 2).

1.3.3 Data evaluation

The data from the 2008-report were checked and the additional ecotoxicity studies were screened for relevant endpoints (i.e. those endpoints that have consequences at the population level of the test species) and thoroughly evaluated with respect to the validity (scientific reliability) of the study. A detailed description of the evaluation procedure is given in the INS-Guidance and in the Annex to the WFD-guidance. In short, the following reliability indices were assigned, based on [17]:

Ri 1: Reliable without restriction

'Studies or data ... generated according to generally valid and/or internationally accepted testing guidelines (preferably performed according to GLP) or in which the test parameters documented are based on a specific (national) testing guideline ... or in which all parameters described are closely related/comparable to a guideline method.'

Ri 2: Reliable with restrictions

'Studies or data ... (mostly not performed according to GLP), in which the test parameters documented do not totally comply with the specific testing guideline, but are sufficient to accept the data or in which investigations are described which cannot be subsumed under a testing guideline, but which are nevertheless well documented and scientifically acceptable.'

Ri 3: Not reliable

'Studies or data in which there are interferences between the measuring system and the test substance or in which organisms/test systems were used which are not relevant in relation to the exposure (e.g., unphysiologic pathways of application) or which were carried out or generated according to a method which is not acceptable, the documentation of which is not sufficient for an assessment and which is not convincing for an expert judgment.'

Ri 4: Not assignable

'Studies or data ... which do not give sufficient experimental details and which are only listed in short abstracts or secondary literature (books, reviews, etc.).'

Citations

In case of (self-)citations, the original (or first cited) value is considered for further assessment, and an asterisk is added to the Ri of the endpoint that is cited.

Mesocosm experiments were evaluated and effect classes assigned according to [18].

1.3.4 Special notes on data treatment

According to the WFD-guidance, a single endpoint per species is presented based on the lowest relevant endpoint observed. If multiple reliable values are available for the same species and the same endpoint originating from similar tests, the geometric mean is taken. Unbound values are not used for EQS-derivation, but are included in the tables to show that a particular taxon has been tested. In addition, if on the basis of such values it appears that the derived value is not protective, the assessment factor may be adapted.

If endpoints are available from tests with different durations, preference is given to the endpoints from tests that followed the minimum test duration as specified in the guideline, e.g. at least 72 hours for algae, 48 hours for daphnids, 96 hours for fish [13,14]. If lower endpoints are available from test that are shorter than the prescribed duration, e.g. 48 hours for algae or 24 hours for daphnids, the higher values obtained with the minimum prescribed test duration are preferred. In principle, the test duration for daphnids is considered applicable to other invertebrates as well.

For EQS-derivation, studies with the active substance are considered most relevant. Effects of formulations, if present, will be relevant for the edge-of-field surface waters, but less so for larger bodies in which the WFD-monitoring points are located. According to the WFD-guidance, a single endpoint per species should be used by calculating the geometric mean of multiple comparable toxicity values for the same species and the same endpoint. When for a given species results are available from similar tests with the active substance and with formulations (for comparable endpoints), it should be determined whether or not the results can be pooled. Recently, it was proposed to follow the procedure that is used to judge the span of species sensitivities for MACderivation, and use the geometric mean of the available values for active substance and products if the standard deviation of the log-transformed individual toxicity values is <0.5 [14]. However, further analysis of this proposal reveals that with small datasets, endpoints differing by more than a factor of 10 can also meet this criterion. Therefore a more arbitrary cut-off value is used here: if the endpoints for product and active substance differ by more than a factor of 3, the value of the active substance is used. However, if for a species the most critical endpoint originates from a test with a formulated product, and no comparable endpoint from a test with the active substance is available, this endpoint of the formulation is used for risk limit derivation.

For imidacloprid, special attention was paid to the maintenance of test concentrations in view of its susceptibility to photodegradation (see Table 4). Dissipation rate in the two static mesocosm studies (see 3.2.2 and Appendix 2) ranged from 28 hours to 13 days, which is most likely due to differences in photolysis caused by e.g. location, time of the year, weather conditions and system related factors such as plant cover and turbidity. From the available data, it is not fully clear whether or not photolysis is a crucial factor under laboratory test conditions. In some studies, no dissipation was observed although exposure was performed under light [19,20]. In other studies, however, dissipation of imidacloprid was observed and some authors report lower toxicity for studies performed under light as compared to studies under darkness [21]. Apparently, the influence of light differs among tests, depending on the light conditions, test water, test vessels, etc. In view of this, studies which were performed under light without analytical verification of test concentrations are assigned Ri 3.

1.4 Status of the results

The results presented in this report have been discussed by the members of the Scientific Advisory Group for standard setting for water and air in the Netherlands (*WK-normstelling water en lucht*). It should be noted that the proposed standards in this report are scientifically derived values, based on (eco)toxicological, fate and physico-chemical data. They serve as advisory values for the Dutch Ministry of Infrastructure and the Environment, that is responsible for setting EQSs. The values presented in this report should thus be considered as advisory values that do not have an official status.

2 Information on the substance

2.1 Intended uses

Imidacloprid is a systemic insecticide belonging to the class of neonicotinoids. The compound is approved for use in the European Union under Regulation (EC) No 1107/2009 (repealing Directive 91/414/EEC). Intended uses in the Netherlands include a variety of crops, among which various greenhouse crops. Applications can be made by means of treated seed, drip irrigation or spray applications. It is also authorised for non-professional use, e.g. to control ants or flies. In May, 2013, the European Commission has adopted a proposal (Regulation (EU) No 485/2013) to restrict the use of imidacloprid and two other neonicotinoid pesticides in response to a scientific report of the European Food Safety Authority (EFSA). EFSA identified potential high acute risks for bees resulting from exposure to dust in several crops such as maize, cereals and sunflower, from exposure to residues in pollen and nectar in crops like oilseed rape and sunflower, and from uptake of guttation fluid in maize [22-24]. Applications in greenhouses and full-crop applications that take place after flowering were not included in the European restrictions. However, based on some of the studies on aquatic arthropods that are also included in this report, the Dutch board for the authorisation of plant protection products and biocides (Ctgb) recently lowered the regulatory acceptable concentration (RAC) to 27 ng/L and restricted the use of several imidacloprid-based products [25,26]. Treatment of discharge water from greenhouses and further drift reduction measures for field applications are made compulsory.

2.2 Substance identification

Table 2 Substance identification

n.	1
Name	imidacloprid
Chemical name	1-[(6-chloro-3-pyridinyl)methyl]-N-nitro-2-
	imidazolidinimine
CAS number	[138261-41-3]
	[105827-78-9] former number
Molecular formula	$C_{14}H_{16}CIN_3O$
Molar mass	255.7 g/mol
EC number	428-040-8
Structural formula	N NH NH
SMILES code	C1CN(C(=N1)N[N+](=0)[O-])CC2=CN=C(C=C2)CI
Use class	Insecticide
Mode of action	Imidacloprid is a systemic insecticide which binds to the nicotinic acetylcholine receptors of nerve cells [19,27]

2.3 Physico-chemical properties

Table 3 Physico-chemical properties

Parameter	Unit	Value	Remark	Reference
Molecular weight	[g/mol]	255.7		[19]
Water solubility	[mg/L]	610	20 °C	[19]
pK _a	[-]	-		
log K _{ow}	[-]	0.57		[19]
		0.41	KowWin	[28]
		-1.56	ClogP	[29]
log K _{OC}	[-]	2.36	K _{oc} 212 L/kg ¹	[19]
Vapour pressure	[Pa]	4 x 10 ⁻¹⁰	20 °C	[19]
		9 x 10 ⁻¹⁰	25 °C ²	
Melting point	[°C]	144 °C	_	[19]
Boiling point	[°C]			[19]
Henry's law constant	[Pa.m³/mol]	1.7 x 10 ⁻¹⁰		[19]

2.4 Fate and behaviour

Selected environmental properties of imidacloprid are given in Table 4.

Table 4 Selected environmental properties of imidacloprid

Parameter	Unit	Value	Remark	Reference
Hydrolysis	DT50	appr. 1	No degradation at pH 5,	[19]
half-life	[d]	year	slight degradation at pH 9.	
Photolysis	DT50	57 min.	pH 7, 23-24.5 °C, artificial	[19]
half-life			light, sterile water	
		4.2 h.	environmental, calculated	[30]
		4.7-18	25 °C, 254 nm	[31]
		min.		
		1.2 h.	24 ± 1 °C, ≥ 290 nm,	[32]
			deionised water	
		43 min.	HPLC grade water	[32]
		126	formulated product in tap	[32]
		min.	water	
		144	formulated product + TiO ₂	[32]
		min.	in tap water	
Degradability			not readily biodegradable	[19]
Water/sediment	DT50	129	Stillwell, Kansas, silty clay	[19]
systems	[d]	32	NL, loamy silt	
		142	NL, loamy sand	
Relevant	photometabolites: NTN33893-desnitro-olefine		[19]	
metabolites	NTN33893-desnitro			
	NTN338	NTN33893-urea		

^{1:} mean of 12 soils 2: extrapolated; 50-70 °C

From the data in Table 4, it appears that imidacloprid is susceptible to photolysis with DT50 of minutes to hours. It is not possible, however, to clearly identify the potential for photolysis under the conditions of aquatic laboratory tests. As indicated in section 1.3.4, studies which were performed under light without analytical verification of test concentrations are therefore assigned Ri 3.

2.5 Bioconcentration and biomagnification

There are no experimental data available for bioconcentration in fish. In view of the log K_{ow} of 0.57, there is no need to derive an a QS based on secondary poisoning. Using the log K_{ow} , the BCF for fish was calculated to be 0.61 L/kg according to [8,9].

3 Human toxicology and ecotoxicological effect data

3.1 Human toxicological threshold limits and carcinogenicity

The Acceptable Daily Intake (ADI) of imidacloprid is 0.06 mg/kg bodyweight per day. The harmonised classification of imidacloprid with respect to human toxicology under CLP Regulation 1272/2008/EC is H302 (harmful if swallowed). This is equivalent to R22 under Directive 67/548/EEC. According to the triggers as given in WFD-Guidance, there is no need to derive a QS for human exposure via fish.

3.2 Ecotoxicological effect data

3.2.1 Laboratory toxicity data

Detailed aquatic toxicity data for imidacloprid are tabulated in Annex 1. Based on the considerations in section 1.3.4, the valid acute and chronic ecotoxicity data for freshwater organisms are summarised in Table 5. Data for marine organisms are presented in Table 6. Marine species are organisms that are representative for marine and brackish water environments and that are tested in water with salinity >0.5 %.

It should be noted that the LC10-values of 14.5 μ g/L for *Pteronarcys dorsata* and 34 μ g/L for *Tipula* sp. originate from a 14-days test. This is shorter than the minimum test duration for chronic tests with arthropods, and the test is semi-chronic. However, because larvae are tested it is considered justified to include the data in the chronic dataset. The NOEC of \geq 5.0 μ g/L for *Sericostoma vittatum* was also performed with larvae, but lasted only 6 days. Since the result is a \geq -value, it is included merely to show that the species has been tested, the result is not used in the calculation of the QS_{fw, eco}.

Table 5 Selected ecotoxicity data of imidacloprid for freshwater organisms.

Acute			Chronic		
Taxon/species	L(E)C50 [µg/L]	Reference	Taxon/species	NOEC/L(E)10 [µg/L]	Reference
Bacteria			Algae		
Vibrio fischerii	58876 a	[20]	Desmodesmus subspicatus	106000 k	[20]
V. qinghaiensis sp.	79255	[33]	Pseudokirchneriella subcapitata	<100000 °	[19]
Algae			Crustaceans		
Desmodesmus subspicatus	389000 b	[20]	Asellus aquaticus	1.35 ^d	[5]
Pseudokirchneriella subcapitata	>100000 ^c	[19]	Daphnia magna	1768	[34]
Crustaceans			Gammarus pulex	2.95 ^d	[5]
Asellus aquaticus	119 ^d	[5]	Hyallella azteca	0.47 h, m	[35]
Ceriodaphnia dubia	2.07	[36]	Insects		
Chydorus sphaericus	832	[21]	Caenis horaria	0.024 ^d	[5]
Cypretta seuratti	1	[21]	Chaoborus obscuripes	1.99 ^{d, m}	[5]
Cypridopsis vidua	10 ^d	[21]	Chironomus riparius	< 0.4 ^{c,n}	[37]
Daphnia magna	52455 ^e	[19,20]	Chironomus tentans	0.42 ^m	[35]
Gammarus pulex	110 ^d	[38]	Cloeon dipterum	0.033 ^d	[5]
Gammarus roesseli	1.94 ^f	[39]	Plea minutissima	2.03 ^d	[5]
Hyallella azteca	55	[35]	Pteronarcys dorsata	14.5 ^{o,p}	[40,41]
Ilyocypris dentifera	3 ^d	[21]	Sericostoma vittatum	≥ 5.0 ^{m, p}	[37]
Insects			Sialis lutaria	1.28 ^d	[5]
Caenis horaria	1.77 ^d	[5]	Tipula sp.	34 ^{.m, p}	[41]
Chaoborus obscuripes	284 ^d	[5]	Fish		
Chironomus dilutus	2.65	[42]	Danio rerio	300000	[20]
Chironomus tentans	6.9 ^g	[35]	Oncorhynchus mykiss	1200 ^q	[27]
Cloeon dipterum	1.02 ^d	[5]			
Epeorus longimanus	0.65 ^h	[43]			
Limnephilidae	1.79 ^d	[5]			
Notonecta spp.	18.2 ^d	[5]			
Plea minutissima	35.9 ^d	[5]			
Sialis lutaria	50.6 ^d	[5]			
Simulium vittatum	8.1 ⁱ	[44]			
Fish					
Danio rerio	227099 ^j	[20]			
Leuciscus idus melanotus	237000	[19]			
Oncorhynchus mykiss	211000	[19]			
Annelids					
Lumbriculus variegatus	6.2	[43]			

Notes

- a: geometric mean of 61900 and 56000 for tests with active and formulation; marine species tested in freshwater
- b: test with active, endpoint for formulation >3 times lower
- c: unbound values are not used as such for EQS-derivation, value included to show that species has been tested
- d: lowest relevant endpoint, immobility
- e: geometric mean of 30000, 85000, and 56600, 48 h tests with formulation and active, endpoint immobility
- f: most sensitive life-stage: spring collected early adults
- g: geometric mean of 10.5 and 5.75, lowest relevant endpoint from tests with active
- h: endpoint from most relevant test duration
- i: geometric mean of 6.75, 8.25 and 9.54
- j: geometric mean of 241000 and 214000, tests with active and formulation
- k: test with active, endpoint for formulation >10 times lower
- I: lowest relevant endpoint, number of neonates; geometric mean of 1250 and 2500
- m: lowest relevant endpoint, mortality
- n: lowest relevant endpoint, development rate
- o: geometric mean of 15.8 and 13.3, 14-d LC10
- p: test duration semi-chronic
- q: lowest relevant endpoint, growth

Table 6 Selected ecotoxicity data of imidacloprid for marine organisms.

Acute			Chronic		
Taxon/species	L(E)C50 [µg/L]	Ref	Taxon/species	NOEC/L(E)10 [μg/L]	Ref
Crustaceans			Molluscs		
Americamysis bahia	35.9 a	[19,27]	Crassostrea virginica	>23300 ^{c, d}	[19,27]
Molluscs					
Crassostrea virginica	>145000 b,c				
Fish					
Cyprinodon variegatus	161000	[19,27]			

Notes

- a: geometric mean of 37.7, 34.1 and 36 from tests with active and formulation
- b: highest concentration without 50% effect
- c: unbound values are not used as such for EOS-derivation, value included to show that species has been tested
- d: lowest concentration without effects

3.2.2 Results from other studies, micro- and mesocosms

Several bioassay experiments and mesocosm studies are available, which are summarised in Appendix 2. Some studies (e.g. [40,41,45]) merely involve indoor single or multiple species tests under more realistic conditions, rather than studies examining the effects on aquatic communities. If valid, results of such tests have been added to the laboratory dataset. For the derivation of water quality standards, both Canada and Switzerland point at the fact that most of the studies have been performed with formulated products, and that it is not known to what extent the formulation has contributed to the effect [16,46]. No definitive conclusion on this aspect can be drawn from the laboratory data, since there are only few organisms for which valid endpoints are available from both technical imidacloprid and formulated products. Usually, if a difference exists, formulated products tend to be more toxic than the active alone and using the endpoint for the formulation is considered to be worst case. The mesocosm and enclosure studies that are

considered valid for EQS-derivation are briefly summarised below.

3.2.2.1 Outdoor pond

An experimental pond study with two spray applications of imidacloprid as Confidor SL 200 at 0.6 to 23.5 µg a.s./L with an interval of 21 days [19,47,48]. Chironomids and Baetidae were most sensitive, the NOEC was established as 0.6 µg a.s./L based on initial concentrations. Following [13], the time weighted average (TWA) concentration over 48 hours is used for derivation of the MAC- $QS_{fw, eco}$. Starting from 0.6 $\mu g/L$ and using the DT50 of 8.2 days (average observed DT50 in the mesocosms), the 48-hours TWA NOEC is calculated as $0.51 \mu g/L$. It should be judged whether the exposure in the mesocosm has been long enough to consider the study relevant for derivation of chronic water quality standards. For this, Brock et al. (2011) advise that test concentrations between peaks should not decline to <10% of initial [13]. EFSA gives a more strict criterion for the use of a single pulse study for chronic risk assessment, and requires a maximum decline to at most 20% of initial (i.e. higher level remaining) within the time window relating to the duration of the test that triggered the risk assessment [49]. With 12-20% of the initial concentration being present in the water phase just before the second application, it is concluded that exposure has been sufficiently chronic to use the study for derivation of the QS_{fw, eco}. For this, the NOEC is expressed as a TWA concentration, based on duration of the most critical chronic laboratory study (28 days), following recommendations of EFSA [49]. Using the average DT50 of 8.2 days, this leads to a 28-days TWA NOEC of 0.23 μ g/L. It is noted that some potentially sensitive taxa were not or not well represented (Ostracoda and Amphipoda), and numbers of Ephemeroptera were too low for statistical analysis. The study is considered for EQS-derivation, taking account of these drawbacks.

3.2.2.2 Outdoor pond enclosure

An outdoor pond enclosure study with three applications of technical imidacloprid at 0.6 to 40 $\mu g/L$ at a 7-days interval [50]. Clear effects on abundance and emergence of several macroinvertebrate taxa were observed at the two highest concentrations of 17.3 and 40 $\mu g/L$ nominal. Ephemeroptera were most sensitive and showed effects on emergence at 3.2 $\mu g/L$ nominal. No significant effects were present at 1.4 $\mu g/L$. Due to the fast decline (DT50 28 hours), the study can only be used for derivation of the MAC-QSfw, eco. For this, the NOEC is expressed on the basis of the 48-hours TWA concentration [13], leading to a value of 0.82 $\mu g/L$.

3.2.2.3 Outdoor stream A

An outdoor stream mesocosm study with three 24-hour pulses of Admire 240 g/L at 2 and 20 μg a.s./L at an interval of 7 days [51]. Observations were made after the last pulse. The high dose caused effects on Ephemeroptera, Plecoptera and Trichoptera, Oligochaetes were sensitive as well. Coleoptera were less affected (ca. 29 % reduction). No significant effects were observed for chironomids. Average measured concentration of imidacloprid over the 24-hours exposure time at the low dose was 1.63 $\mu g/L$. This 24-hours NOEC is considered for derivation of the MAC-QS $_{\rm fw,\ eco}$, taking account of the fact that exposure duration was shorter than in the laboratory studies used for MAC-derivation. On the other hand, repeated applications may be considered worst case for derivation of the MAC. It is not known, however, if a higher NOEC would have been derived when observations after a single pulse would have been made, because in other studies effects on Ephemeroptera already became apparent after a single pulse.

3.2.2.4 Outdoor stream B

An outdoor stream mesocosm study with a single 12-hours pulse of Admire 240 g/L at 0.1 to 10 μ g a.s./L or continuous treatment with 0.1 to 1 μ g a.s./L for 20 days [52]. For the pulse treatment, the 12-hours NOEC for emergence and abundance of the mayfly species *Epeorus* spp. (Heptageniidae) was 3.9 µg a.s./L based on actual measured concentrations of imidacloprid. For Baetis spp. (Baetidae), the NOEC was $\geq 9.1 \, \mu g$ a.s./L (actual measured). For the continuous treatment, the 20-days NOEC emergence of Epeorus spp. was 0.1 µg a.s./L, the NOEC for Baetis spp. was 0.3 µg a.s./L, based on measured concentrations. In both treatments, significant effects on adult thorax and/or head length were observed at the lowest concentration of 0.1 μ g a.s./L (NOEC < 0.1 μ g a.s./L). Although the ecological implications of reduced head- or thoraxlength are not clear, the authors points at a potential impact on e.g. mating success. The lowest 12-hours NOEC of 3.9 µg/L is considered for derivation of the MAC-QS_{fw. eco.} the lowest 20-days NOEC of 0.1 µg/L for derivation of the QS_{fw. eco.} In both cases it should be taken into account that exposure duration was shorter than in the laboratory studies used for the respective EQS-derivations. Furthermore, species and community interactions were not studied.

3.2.2.5 Indoor stream

An indoor stream mesocosm study with two series of three 12-hour pulses of imidacloprid (99.9% pure) at 12 μ g/L, applied at a weekly interval [53,54]. Significant effects were observed on several insect taxa, with Ephemeroptera (affected after single pulse), Trichoptera (id.), Chironomidae and Gammaridae being most sensitive. The 12-hours NOEC of < 12 μ g/L is considered for derivation of the MAC-QS_{fw, eco}, taking account of the fact that exposure duration was shorter than in the laboratory studies used for MAC-derivation.

3.2.2.6 Outdoor enclosure with *Cloeon dipterum*

An outdoor enclosure study with *Cloeon dipterum* with two applications of Imidacloprid SL 200 at 0.024 to 3.8 μg a.s./L [55]. Enclosures were stocked with *C. dipterum* larvae in September 2013 and abundance was followed until 37 days after application. The timing of the experiment did not allow for assessment of reproduction and emergence. With 36-40% of the initial concentration being present in the water phase just before the second application, it is concluded that exposure has been sufficiently chronic. A decrease in abundance was observed in one of the replicates of the 3.8 μg a.s./L treatment and consequently the NOEC was set to 1.52 μg a.s./L nominal. Taking the duration of the critical laboratory test as a starting point, a 28-days TWA

concentration is considered as most appropriate to express the NOEC. Using the DT50 of 10.8 days, this leads to a NOEC of 0.82 μ g/L and this value is considered for derivation of the QS_{fw. eco.} The TWA concentration over 48 hours (1.43 μ g/L) is considered for derivation of the MAC-QS_{fw, eco}. It is noted that the 28-days NOEC of 0.82 $\mu g/L$ is much higher than the EC10 for immobility of 0.033 µg/L that was observed for the same species in the 28-days laboratory test [5]. Similarly, the 48-hours TWA NOEC of 1.43 μg/L is higher than the laboratory based 96-hours EC10 for immobility of 0.1 µg/L [5]. The Minimum Detectable Difference (MDD) in the enclosure study was 49% or higher. With this MDD it is not possible to detect subtle effects at the EC10 level, since only differences of about 50% or higher can be detected as significant. In view of this, it is probably more appropriate to compare the results of the outdoor study with the 50% effect values from the laboratory test. The 96-hours EC50 is 1.02 µg/L and the 28-days EC50 is 0.126 µg/L, which is more in line with the results of the outdoor test. Another possible explanation for the high NOEC in the outdoor study could be that the larvae for the laboratory test were collected in summer (pers. comm. Paul van den Brink, Alterra), while application in the present study took place in late autumn. If animals are preparing for overwintering, this may induce changes in metabolic state. A comparison between spring and autumn collected animals was made in an acute study with Gammarus roeseli [39], but no conclusions can be drawn from that experiment because test water and feeding were varied as well (see Appendix 1, Table A1.1). The NOECs of 1.43 and 0.82 µg/L are considered for derivation of the MAC-QS $_{\text{fw, eco}}$ and QS $_{\text{fw, eco}}$, taking into account that only one species was evaluated and that the timing of the experiment may have influenced the sensitivity of the mayflies.

4 Derivation of water quality standards

4.1 Pooling of freshwater and marine data

According to the WFD-guidance, data for freshwater and marine species may be pooled since there are too few data to perform a meaningful statistical comparison and there are no further indications (spread of the data, readacross, expert judgement) of a difference in sensitivity between freshwater and marine organisms of the relevant taxonomic groups.

4.2 Derivation of the MAC-EQS

Acute toxicity data are available for 30 species, representing seven taxa: bacteria, algae, crustaceans, insects, molluscs (unbound value), fish and annelids. The acute base set (algae, *Daphnia*, fish) is available. Bound values are presented in Figure 1, where acute L(E)C50-values for different taxonomic groups are plotted on a log-scale. From the data in Tables 5 and 6 and Figure 1 it can be seen that there is a large variation in sensitivity among the species tested, both between taxa as well as within taxa. Even closely related species within a taxon show large differences, despite similar life-forms and feeding strategies (see e.g. *Daphnia magna* and *Ceriodaphnia dubia* or *Gammarus pulex* and *G. roeseli*).

Overall, crustaceans and insects represent the sensitive species groups. The single value for *Lumbriculus variegatus* indicates that annelids may also represent a potentially sensitive species group. Within the group of aquatic insects, Ephemeroptera (represented by the mayflies *Caenis horaria*, *Cloeon dipterum* and *Epeorus longimanus*) and Diptera (represented by the midges *Chironomus dilutus* and *C. tentans*, and the blackfly *Simulium vittatum*) are most sensitive. The midge *Chaoborus obscuripes* seems to be an exception with a rather high acute EC50 in comparison to the other midges, but the chronic endpoint for this species is low (see Table 5).

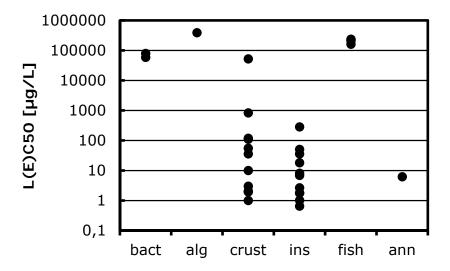


Figure 1 Representation of acute toxicity of imidacloprid to water organisms. Acute L(E)C50-values for bacteria, algae, crustaceans, insects, fish and annelids are plotted on the Y-axis. Note that Y-axis is presented on a log-scale.

4.2.1 Assessment factor approach

The MAC-QS_{fw, eco} is derived in the first instance by putting an assessment factor of 10 to the lowest LC50 of 0.65 μ g/L for *Epeorus Iongimanus*, resulting in a AF-based MAC-QS_{fw, eco} of 0.065 μ g/L.

4.2.2 SSD approach

The dataset does not fully meet the criteria for construction of a Species Sensitivity Distribution (SSD) as listed in the WFD-guidance. According to the guidance, the output from an SSD-based quality standard is considered reliable if the database contains preferably more than 15, but at least 10 datapoints, from different species covering at least eight taxonomic groups. Below, the criteria are copied, together with the representative species from the present dataset:

- Fish: Danio rerio (family Cyprinidae)
- A second family in the phylum Chordata: Oncorhynchus mykiss (family Salmonidae)
- A crustacean: Asellus aquaticus
- An insect: Caenis horaria (order Ephemeroptera, family Caenidae)
- A family in a phylum other than Arthropoda or Chordata: Lumbriculus variegatus (phylum Annelida, family Lumbriculidae)
- A family in any order of insect or any phylum not already represented:
 Chaoborus obscuripes (order Diptera), Crassostrea virginica (phylum Mollusca)
- Algae: Desmodesmus subspicatus
- Higher plants: no data

From this list it can be seen that data are missing for macrophytes only. However, in view of the fact that imidacloprid is an insecticide with a very specific mode of action, and algae are clearly not sensitive, derivation of the $MAC-QS_{fw,\ eco}$ by means of SSD is considered justified.

First, the HC5 value is estimated using ETX 2.0 [56] with all L(E)C50 data. The result is presented in Figure 2, details can be found in Appendix 3. As can be seen from this figure, there is a distinction between bacteria, algae and fish at the upper right side of the distribution, and crustaceans and insects at the left side. The sensitivity of insects and crustaceans seems to overlap, with the exception of *Daphnia magna*, which is clearly insensitive. The annelid *L.* variegatus is located in between insects and crustaceans. Overall, the fit of the distribution is bad which is confirmed by a rejected goodness-of-fit at all levels, except for the Kolmogorov-Smirnov test at 0.01. Based on this figure, it is considered justified to explore the option of a specific SSD for the sensitive taxa as indicated in the WFD-guidance. The first step is to construct an SSD with the species group that in line with the mode of action would be most sensitive [13]. Since there are 11 insect data, the requirements for constructing a specific SSD are met. The result is presented in Figure 3. The goodness-of-fit is accepted at all levels. The median estimate of the HC5 is 0.30 µg/L, with upper and lower limit of 0.04 and 1.0 μ g/L, respectively (see Appendix 3).

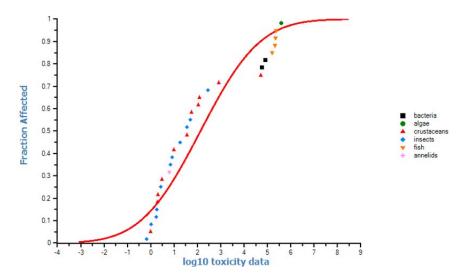


Figure 2 Species Sensitivity Distribution for imidacloprid based on acute toxicity data for all available aquatic species. The X-axis represents log-transformed L(E)C50-values in μ g/L, the Y-axis represents the fraction of species affected.

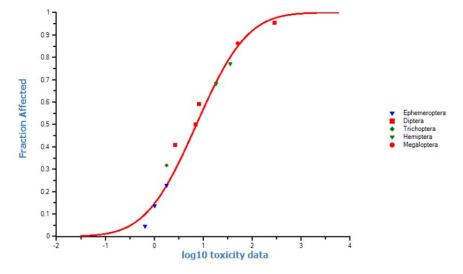


Figure 3 Species Sensitivity Distribution for imidacloprid based on acute toxicity data for aquatic insects. The X-axis represents log-transformed L(E)C50-values in $\mu g/L$, the Y-axis represents the fraction of species affected.

Since the data for crustaceans overlap with the insect data, the option of extending the dataset with the most related species group at the next higher taxonomic level (i.e. arthropods) is also explored [14]. This however, results in rejection of the goodness-of-fit (Anderson-Darling, 0.1). The result is shown in Figure 4.

Figure 4 Species Sensitivity Distribution for imidacloprid based on acute toxicity data for aquatic arthropods (insects and crustaceans combined). The X-axis represents log-transformed L(E)C50-values in $\mu g/L$, the Y-axis represents the fraction of species affected.

When omitting the high endpoint for *D. magna* from the dataset, the goodness-of-fit is again accepted for all tests at all levels. Figure 5 shows the resulting SSD. The median estimate of the HC5 is 0.36 μ g/L, which is slightly higher than the HC5 based on insects only, but with narrower confidence intervals (upper and lower limit are 0.09 and 0.97 μ g/L, respectively; see Appendix 3 for details).

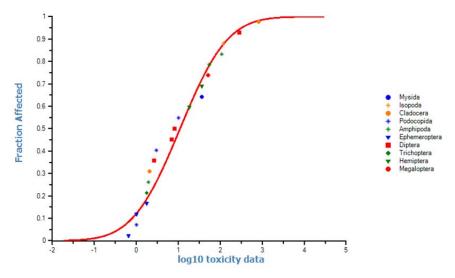


Figure 5 Species Sensitivity Distribution for imidacloprid based on acute toxicity L(E)C50 data for aquatic arthropods (insects and crustaceans combined), endpoint for Daphnia magna omitted. The X-axis represents log-transformed L(E)C50-values in μ g/L, the Y-axis represents the fraction of species affected.

It is recognised that omitting the endpoint for *D. magna* from the acute SSD is an arbitrary choice, since no criteria have been defined for classifying a datapoint as an outlier. Some guidance may be found in the EFSA guidance

document on aquatic risk assessment of plant protection products in the context of European authorisation under Regulation 1107/2009/EC [49]. According to this document, a regulatory acceptable concentration may be derived on the basis of the geometric mean of available endpoints. However, in the case of differences in sensitivity of 1 or 2 orders of magnitude (factor 10-100), this option should be used with care because the result may be biased by introducing insensitive species. It is stated that if for aquatic invertebrates the most sensitive species is more than a factor of 100 below the geometric mean of all tested species, a weight of evidence approach should be applied. For imidacloprid, the difference in acute L(E)C50 values among arthropods spans six orders of magnitude, and the EC50 for *D. magna* is more than 3000 times higher than the geometric mean, while the difference for the next lower EC50 (832 µg/L for *Chydorus sphaericus*) is limited to a factor of about 50. Together with the improved fit of the distribution, this is considered an argument to omit the EC50 of *D. magna* from the dataset.

Based on the above presented SSDs, the HC5 of $0.36~\mu g/L$ is used. This is almost a factor of 2 lower than the lowest available endpoint ($0.65~\mu g/L$ for *E. longimanus*). The WFD-guidance recommends to apply a default assessment factor of 10 to the HC5 when L(E)50 data are used in a generic SSD. No guidance is given on the assessment factors in case a specific SSD is constructed for the potentially most sensitive species groups. For this situation, a default assessment factor of 6 was proposed by Brock et al. [13]. It can be seen from Figure 5 that the two lowest datapoints are on the right hand side of the curve, and that the HC5 is protective. This confirms that a lower assessment factor is justified, and the value of 6 is used. This results in an SSD-based MAC-QS_{fw, eco} of $0.06~\mu g/L$. This value is in line with the HC5 of $0.05~\mu g/L$ which is obtained using the valid 96-hours EC10 values for eight arthropod species reported by Roessink et al. [5] (see Appendix 1, Table A1.1).

4.2.3 Mesocosm data

A NOEC of 0.51 μ g/L is available from a pond study with two applications at a time interval of 21 days. A pond enclosure study with three applications at a 7-days interval resulted in a NOEC of 0.82 μ g/L. Both values are expressed on the basis of 48-hours TWA concentrations. NOECs from stream mesocosms with single or repeated 12-24 hours pulse applications are 1.63, 3.9 and < 12 μ g/L, respectively. The 48-hours TWA NOEC from the outdoor enclosure study with *C. dipterum* is 1.43 μ g/L. It is not known, however, to what extent the timing of the experiment has influenced the sensitivity of the mayflies.

For derivation of the MAC-QS on the basis of a single valid mesocosm NOEC, the WFD-guidance proposes to put an assessment factor of 5 on the NOEC. According to [13], and assessment factor of 2-3 may be put on the Effect class 1 NOEC in case one mesocosm is available with a single application design. In case of multiple applications, a factor of 1-2 is proposed. A lower factor may be applied when more studies are available. To decide on the height of the assessment factor, the following considerations are made:

According to the DAR [19], the variability in insect species sensitivity was not fully addressed in the pond study, and the most sensitive taxon of the laboratory dataset, Ephemeroptera, was not adequately represented. Ephemeroptera were, however, included in the pond enclosure study (see 3.2.2.2) and in the additional mesocosm stream studies, although the

- exposure duration in these latter studies was shorter than the minimum standard test duration for arthropods of 48 hours.
- Both the pond and the pond enclosure study involve multiple applications, but it is not clear if this argument can be used to lower the assessment factor. In the pond study, the application interval was large and effects were already present after the 1st application. This was also the case in the indoor stream study which delivered the NOEC of <12 μg/L (see 3.2.2.5). The NOEC of 1.63 μg/L (stream A, 3.2.2.3) refers to multiple applications, but it cannot be judged if a single pulse would have resulted in a higher NOEC.</p>
- The NOEC for effects on thorax and/or head length of *Baetis* sp. and *Epeorus* sp. was $<0.1~\mu g/L$. Although the ecological consequences are not clear, there is reason for concern.

Based on the above, an AF of 3 is maintained on the lowest NOEC, and the mesocosm MAC-QS $_{\rm fw,\,eco}$ is set to 0.17 µg/L. This is still higher than the NOEC for thorax/head length, and also higher than the 96-hours laboratory EC10 for *C. dipterum* of 0.1 µg/L ([5]; see Appendix 1, Table A1.1). However, the other 96-hours EC10 values are a factor of 2 or more higher, and the lowest 96-hours LC10 of 2.55 µg/L for *C. horaria* is a factor of 15 higher than the mesocosmbased MAC-QS $_{\rm fw,\,eco}$.

4.2.4 Selection of the MAC-EQS

The MAC-QS_{fw, eco} derived by the assessment factor approach is 0.065 $\mu g/L$, the SSD approach results in 0.06 $\mu g/L$ and the mesocosm approach in 0.17 $\mu g/L$. The difference between lowest and highest value is a factor of 2.8. According to the WFD-guidance, preference is given to an SSD- or mesocosm-based MAC since these entail a more robust approach towards ecosystem effects. The SSD-based MAC is obtained with an assessment factor of 6 on the HC5, which results in a value that is slightly lower than obtained with the AF-approach. As argued above, the HC5 might be a worst case estimate and probably even a lower assessment factor may be justified. This is confirmed by the information from the mesocosm studies, but no further guidance exists on the choice of the assessment factor. Based on the available information, the mesocosm-based value is selected and the MAC-EQS_{fw} is set to 0.17 $\mu g/L$. This value is very similar to the current MAC-EQS_{fw} of 0.2 $\mu g/L$, and it is advised to retain the current standard.

The MAC-QS_{sw, eco} is derived on the basis of the freshwater dataset. Since there are no acute data from specific marine taxa, an additional assessment factor of 10 is applied to the MAC-QS_{fw, eco}. This results in a MAC-EQS_{sw} of 0.02 μ g/L (20 ng/L).

4.3 Derivation of the AA-EQS

Chronic toxicity data are available for 14 species, representing five taxa: algae, crustaceans, insects, fish and molluscs (unbound value). Bound values are presented in Figure 6.

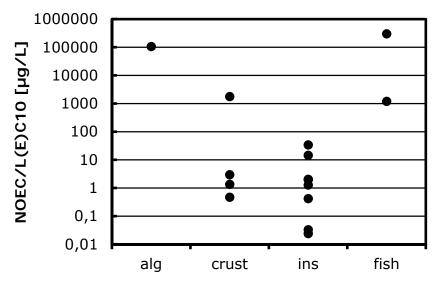


Figure 6 Representation of chronic toxicity of imidacloprid to water organisms. Chronic NOEC or L(E)C10-values for algae, crustaceans, insects and fish are plotted on the Y-axis. Note that Y-axis is presented on a log-scale.

From the data in Table 5 and 6 and Figure 8 it can be seen that there is a similar high variation in sensitivity as is present in the acute dataset. Again, crustaceans and insects represent the sensitive species groups, but the ranking of individual species as regards their relative sensitivity differs between the acute and chronic dataset. In Table 7, the species for which both acute and chronic endpoints are available are ranked from most sensitive (top) to least sensitive (bottom).

Table 7 Ranking of aquatic arthropods with respect to their sensitivity to imidacloprid. Ranking based on the acute and chronic toxicity data from laboratory tests given in Table 5. Most sensitive species in top row.

Acute	Chronic
Cloeon dipterum	Caenis horaria
Caenis horaria	Cloeon dipterum
Chironomus tentans	Chironomus tentans
Plea minutissima	Hyallella azteca
Sialis lutaria	Sialis lutaria
Hyallella azteca	Asellus aquaticus
Gammarus pulex	Chaoborus obscuripes
Asellus aquaticus	Plea minutissima
Chaoborus obscuripes	Gammarus pulex
Daphnia magna	Daphnia magna

Based on acute and chronic data, *D. magna* is least sensitive while *C. dipterum*, *C. horaria* and *C. tentans* are most sensitive. In between , species switch positions when comparing the acute and chronic data. This emphasises the fact that the question whether or not the potentially most sensitive species is represented in the dataset should not be based on data for individual species,

but should be evaluated considering the combined acute and chronic data of representative taxonomically related species. More guidance is needed on what level of biological organisation should be used to compare acute and chronic sensitivity [14].

4.3.1 Assessment factor approach

The QS_{fw, eco} is derived in the first instance by putting an assessment factor of 10 to the lowest EC10 of 0.024 μ g/L for the mayfly *C. horaria*, resulting in a QS_{fw, eco} of 0.0024 μ g/L = 2.4 ng/L.

4.3.2 SSD approach

There are not enough data to construct a generic SSD that meets the criteria of the WFD-guidance. Based on the same considerations as presented above for the derivation of the MAC-EQS, constructing a specific SSD might be considered for derivation of the QS $_{\rm fw,\,eco}$. Combining the insects and crustaceans into one dataset for arthropods, endpoints for 12 species are available when the NOEC for *D. magna* is included. The goodness-of-fit is accepted for all tests at all levels. Figure 7 shows the resulting SSD. The median estimate of the HC5 is 0.012 μ g/L (12 ng/L), with upper and lower limit of 0.0005 and 0.08 μ g/L, respectively (for details see Appendix 3).

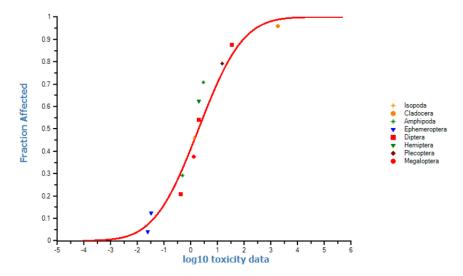


Figure 7 Species Sensitivity Distribution for imidacloprid based on chronic toxicity data for aquatic arthropods (insects and crustaceans combined). The X-axis represents log-transformed NOEC/L(E)C10-values in µg/L, the Y-axis represents the fraction of species affected.

However, following a similar reasoning as for the acute SSD, it is considered justified to leave the NOEC for *D. magna* out of the dataset, since it is more than 900 times larger than the geometric mean of all NOEC/EC10-values. Figure 8 shows the resulting SSD. The goodness-of-fit is still accepted for all tests at all levels. The HC5 is 0.025 μ g/L (25 μ g/L), which is similar to the lowest NOEC (0.024 μ g/L for *C. horaria*). Lower and upper limits are of 0.002 and 0.1 μ g/L, respectively, confidence limits are smaller than when *D. magna* is included (see Appendix 3).

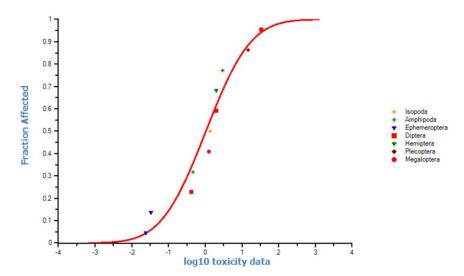


Figure 8 Species Sensitivity Distribution for imidacloprid based on chronic toxicity data for aquatic arthropods (insects and crustaceans combined), Daphnia magna omitted. The X-axis represents log-transformed NOEC/L(E)C10-values in μ g/L, the Y-axis represents the fraction of species affected.

The curve without *D. magna* seems to fit less well through the datapoint for *C. dipterum*, and the HC5 is not fully worst case for *C. horaria*. On the other hand, the spread around the HC5 is smaller and this approach is consistent with that followed for the MAC-EQS.

The WFD-guidance recommends to apply a default assessment factor of 5-1 to the HC5 when chronic NOEC/L(E)10 data are used in a generic SSD. No guidance is given on the assessment factors in case a specific SSD is constructed for the potentially most sensitive species groups. A default assessment factor of 3 is proposed by [13]. To decide on the height of the assessment factor, the following considerations are made:

- The dataset is limited and does not meet the requirements of a generic SSD; the number of datapoints for sensitive taxa is only just above the minimum of 10, but the data cover the species groups that have consistently been shown to be sensitive.
- For all species for which acute and chronic data are available, the acute-to-chronic ratio (ACR) is higher than 10, ranging from 16 for *C. tentans* to 143 for *C. obscuripes* (median 39; geometric mean 47). High ACRs are found within the group of crustaceans (e.g. *A. aquaticus*, *H. azteca*) as well as among insects (*C. obscuripes*, *C. horaria*). This is an indication that a number of relatively low endpoints might be added to the chronic dataset if other acutely sensitive species would have been tested chronically. This would potentially lead to a lower HC5, as can be demonstrated using the median ACR for species for which no chronic endpoint is available.
- However, the results of the mesocosm and related studies, although not considered adequate as a direct basis for QS-derivation (see below, 4.3.3), substantiate the assumption that an assessment factor of 3 might be sufficiently protective for the sensitive aquatic taxa.

Therefore, it is proposed to maintain the assessment factor of 3 to the HC5 of 0.025 μ g/L, resulting in a QS_{fw, eco} of 0.0083 μ g/L (8.3 ng/L). This is a factor of 2.9 lower than the lowest EC10-value.

4.3.3 Mesocosm data

A 28-days TWA NOEC of 0.23 μ g/L is available from a pond study with two applications at a time interval of 21 days [19,47,48]. According to the DAR [19], the variability in insect species sensitivity was not fully addressed in this study, and the most sensitive taxon of the laboratory dataset, Ephemeroptera, was not adequately represented. To overcome this deficiency, an outdoor enclosure study with *Cloeon dipterum* was performed using a similar treatment regime as applied in the pond study [55]. The 28-days TWA NOEC for abundance of *C. dipterum* from this new study is 0.82 μ g/L. However, this value cannot be used to replace the outcome of the mesocosm study because only *C. dipterum* was evaluated. Moreover, due to the timing of the study, only abundance of nymphal stages was taken into account and reproduction and emergence were not included. In addition, it is not known if the sensitivity of the larvae is similar when tested in autumn as compared to spring or summer.

For the Ephemeroptera *Epeorus* spp. and *Baetis* spp., a lower NOEC of 0.1 μ g/L was derived from a stream mesocosm with constant exposure [52]. However, the duration of exposure in this test was 20 days, which is shorter than in the critical laboratory studies (28 days). Given the high ACR, it can be expected that longer exposure leads to increased effects. More importantly, species or community interactions were not included since only two mayfly genera were studied. Furthermore, the NOEC for effects on thorax and/or head length of *Baetis* sp. and *Epeorus* sp. was <0.1 μ g/L. In view of this, it is not considered justified to use the mesocosm studies directly for derivation of the QS_{fw, eco}. The results, however, are considered for the choice on the assessment factor on the HC5 (see 4.3.2).

4.3.4 Selection of the AA-EQS

For imidacloprid, direct ecotoxicity is the only route considered for derivation of the AA-EQS. The QS $_{\text{fw}, \text{ eco}}$ derived by the assessment factor approach is 0.0024 μ g/L (2.4 ng/L), the SSD-approach results in 0.0083 μ g/L (8.3 ng/L). The difference is a factor of 3.5. According to the WFD-guidance, preference is given to an SSD-based QS $_{\text{fw}, \text{ eco}}$ since this is a more robust approach towards ecosystem effects. The AA-EQS $_{\text{fw}}$ is set to 0.0083 μ g/L (8.3 ng/L).

The $QS_{sw,\;eco}$ is derived on the basis of the freshwater dataset. Since there are no acute data from specific marine taxa, an additional assessment factor of 10 is applied to the $QS_{fw,\;eco}$. This results in an AA-EQS_{sw} of 0.83 ng/L.

It is noted that the difference between the AA-EQS and MAC-EQS is a factor of 24, which is due to the high ACR. When monitoring data are compared with the standards according to the procedures under the WFD, exceedance of the MAC-EQS will automatically lead to exceedance of the AA-EQS. This means that the MAC-EQS for imidacloprid is of little relevance from the viewpoint of compliance check. However, it may be used for other purposes as well, such as actual risk assessment of incidental peaks.

4.4 NC_{fw} and NC_{sw}

The NC is calculated by dividing the AA-EQS by a factor of 100. The NC $_{\rm fw}$ is 0.083 ng/L, the NC $_{\rm sw}$ is 0.0083 ng/L.

4.5 SRC_{fw. eco} and SRC_{sw. eco}

Since more than three long-term NOECs of all required trophic levels are available, the $SRC_{fw,\;eco}$ is derived from the geometric mean of all available NOECs with an assessment factor of 1. The resulting $SRC_{fw,\;eco}$ is 14 $\mu g/L$. This value is also valid as $SRC_{sw,\;eco}$.

4.6 QS_{dw. hh} – surface water for abstraction of drinking water

Imidacloprid is an organic pesticide. The drinking water standard according to Directive 98/83/EC is 0.1 μ g/L, which is used as QS_{dw, hh}. According to the WFD-guidance, a substance specific removal rate should be considered to derive the QS_{dw, hh}. At present, such information is not available and water treatment is not taken into account. The QS_{dw, hh} is 0.1 μ g/L.

4.7 Implications of the proposed values for water quality assessment

Monitoring data for imidacloprid in the Netherlands are presented in the Dutch Pesticide Atlas [3]. Concentrations at individual sampling locations frequently exceed the water quality standards. In 2012, the MAC-EQS of 0.2 µg/L was exceeded at 45 out of 451 locations (10%), the current AA-EQS of 0.067 µg/L at 54 out of 451 monitoring locations (12%). Exceedance is detected whole year round, but less in winter [3]. Lowering the AA-EQS according to the current proposal would potentially lead to a higher frequency and/or number of locations at which the standards are exceeded. On the other hand, the restrictions on the use of imidacloprid in greenhouse and field applications that were recently issued by Ctgb (see 2.1) may lead to reduced emissions to surface water. It should be noted, however, that the regulatory acceptable concentration (RAC) on which the current authorisations are based is about a factor of 3 higher than the proposed AA-EQS. This is mainly due to the fact that the methodology for authorisation and EQS-setting differ with respect to the use of assessment factors. Moreover, simultaneous or consecutive use on different crops is not accounted for in the authorisation procedure. Meeting the RAC for authorisation is thus still no guarantee for compliance with the proposed WFD-standards, but the restrictions set by Ctqb may lead to improved water quality. The overall impact of the newly proposed standard on the assessment of Dutch surface water quality thus remains unclear until new monitoring data are available.

5 Conclusions

A proposal for water quality standards for imidacloprid is presented based on upto-date ecotoxicological information from laboratory studies and semi-field experiments. Large differences in sensitivity exist among species within a taxonomic group. Overall midges and mayflies appear to be the most sensitive organisms. A relatively large number of acute and chronic data is available, allowing for statistical extrapolation for derivation of standards. For derivation of the MAC-EQS, semi-field data are considered as well. However, due to uncertainty with respect to species composition and exposure duration, these studies are not considered valid for derivation of the AA-EQS. A summary of the proposed standards is presented below. Based on the new information the current MAC-EQS of 0.2 µg/L can be maintained. The newly proposed AA-EQS is 8.3 ng/L. Because this is a factor of eight lower than the current standard, this would potentially lead to a higher frequency and/or number of locations at which the standards are exceeded in the Netherlands. On the other hand, recent restrictions on field applications of imidacloprid and the use in greenhouses should result in decreased emissions to surface water. Future monitoring data will ultimately reveal the overall impact of the newly proposed standard on the assessment of Dutch surface water quality.

Table 8 Summary of proposed water quality standards for imidacloprid. Values in bold are required standards according to the WFD.

	Value	Value
	[µg/L]	[ng/L]
Freshwater		
AA-EQS	0.0083	8.3
MAC-EQS	0.2	200
NC	0.000083	0.083
SRC	14	14000
Surface water for drinking water production		
QS _{dw, hh}	0.1	100
Saltwater		
AA-EQS	0.00083	0.83
MAC-EQS	0.02	20
NC	0.0000083	0.0083
SRC	14	14000

Acknowledgements

Thanks are due to Connie Posthuma-Doodeman, Peter van Vlaardingen, and Frank de Jong (RIVM) for reviewing the ecotoxicity data tables and evaluating micro- and mesocosm data. Lonneke van Leeuwen and Charles Bodar (RIVM) are acknowledged for checking the final report and for editorial support. The members of the Scientific Advisory Group for standard setting for water and air in the Netherlands (*WK-normstelling water en lucht*) are gratefully acknowledged for reviewing and discussing the report.

References

Reference list includes references used in the appendices

- 1. VROM, VenW, LNV. 2010. Regeling monitoring kaderrichtlijn water. Staatscourant 5615.
- 2. Posthuma-Doodeman CJAM. 2008. Environmental risk limits for imidacloprid. Bilthoven, The Netherlands. National Institute for Public Health and the Environment. Report 601716018.
- 3. CML, RWS-WVL. 2014. Bestrijdingsmiddelenatlas, version 3.0. Leiden/Lelystad, The Netherlands. Centrum voor Milieuwetenschappen, Universiteit Leiden/Rijkswaterstaat-Water, Verkeer en Leefomgeving. [Accessed February 2014]. Available from: http://www.bestrijdingsmiddelenatlas.nl/.
- 4. Van der Linden AMA, Kruijne R, Tiktak A, Vijver MG. 2012. Evaluatie van de nota Duurzame gewasbescherming. Deelrapport Milieu. Bilthoven. National Institute for Public Health and the Enviroment. Report 607059001.
- 5. Roessink I, Merga LB, Zweers HJ, Van den Brink PJ. 2013. The neonicotinoid imidacloprid shows high chronic toxicity to mayfly nymphs. Environ Toxicol Chem 32, 1096-1100.
- 6. VROM. 2004. (Inter)nationale Normen Stoffen. Den Haag, The Netherlands. Ministry of Housing, Spatial Planning and the Environment.
- 7. VROM. 1999. Environmental risk limits in the Netherlands. A review of environmental quality standards and their policy framework in the Netherlands. The Hague, The Netherlands. Ministry of Housing Spatial Planning and the Environment.
- 8. EC. 2011. Technical guidance for deriving environmental quality standards. Common Implementation Strategy for the Water Framework Directive (2000/60/EC). Guidance Document No. 27. Brussels, Belgium. European Communities.
- Van Vlaardingen PLA, Verbruggen EMJ. 2007. Guidance for the derivation of environmental risk limits within the framework of "International and national environmental quality standards for substances in the Netherlands" (INS). Bilthoven, The Netherlands. National Institute for Public Health and the Environment. Report 601782001.
- 10. JRC. 2003. Technical Guidance Document on risk assessment in support of Commission Directive 93/67/EEC on risk assessment for new notified substances, Commission Regulation (EC) No 1488/94 on risk assessment for existing substances and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of biocidal products on the market. Ispra, Italy. European Commission.
- 11. Lepper P. 2005. Manual on the Methodological Framework to Derive Environmental Quality Standards for Priority Substances in accordance with Article 16 of the Water Framework Directive (2000/60/EC). Schmallenberg, Germany. Fraunhofer-Institute Molecular Biology and Applied Ecology.
- 12. ECHA. 2008. Guidance on information requirements and chemical safety assessment Chapter R.7c: Endpoint specific guidance. Version 1. Helsinki, Finland. European Chemicals Agency.
- 13. Brock TCM, Arts GHP, Ten Hulscher TEM, De Jong FMW, Luttik R, Roex EWM, Smit CE, Van Vliet PJM. 2011. Aquatic effect assessment for plant

- protection products: Dutch proposal that addresses the requirements of the Plant Protection Product Regulation and Water Framework Directive. Wageningen, The Netherlands. Alterra Wageningen UR (University & Research centre). Report 2235.
- 14. Smit CE, Arts GHP, Brock TCM, Ten Hulscher TEM, Luttik R, Van Vliet PJM. 2013. Aquatic effect and risk assessment for plant protection products; Evaluation of the Dutch 2011 proposal. Wageningen, The Netherlands. Alterra Wageningen UR (University & Research centre). Report 2463.
- 15. EC. 2011. Assessment Report Imidacloprid. Product-type 18 (Insecticides, Acaricides and Products to control other Arthropods). Directive 98/8/EC concerning the placing of biocidal products on the market. 18 February 2011. Annex I Germany.
- 16. Oekotoxzentrum. 2013. EQS Vorschlag des Oekotoxzentrums für: Imidacloprid. 24-05-2013.
- 17. Klimisch HJ, Andreae M, Tillman U. 1997. A systematic approach for evaluating the quality of experimetral toxicological and ecotoxicological data. Regul Toxicol Pharmacol 25, 1-5.
- 18. De Jong FMW, Brock TCM, Foekema EM, Leeuwangh P. 2008. Guidance for summarizing and evaluating aquatic micro- and mesocosm studies. A guidance document of the Dutch Platform for the Assessment of Higher Tier Studies. Bilthoven, The Netherlands. National Institute for Public Health and the Environment. Report 601506009.
- 19. EC. 2006. Imidacloprid, Draft Assessment Report. Rapporteur Member State: Germany. Public version February 2006. With Addendum.
- 20. Tišler T, Jemec A, Mozetič B, Trebše P. 2009. Hazard identification of imidacloprid to aquatic environment. Chemosphere 76, 907-914.
- 21. Sánchez-Bayo F, Goka K. 2006. Influence of light in acute toxicity bioassays of imidacloprid and zinc pyrithione to zooplankton crustaceans. Aquat Toxicol 78, 262-271.
- 22. EFSA. 2013. Conclusion on the peer review of the pesticide risk assessment for bees for the active substance clothianidin. EFSA Journal 11(1), 3066.
- 23. EFSA. 2013. Conclusion on the peer review of the pesticide risk assessment for bees for the active substance imidacloprid. EFSA Journal 11(1), 3068.
- 24. EFSA. 2013. Conclusion on the peer review of the pesticide risk assessment for bees for the active substance thiamethoxam. EFSA Journal 11(1), 3067.
- 25. Ctgb. 2014. Toelatingsbesluit Kohinor 700 WG 13831 N. 30 January 2014 Wageningen, The Netherlands. College voor de toelating van gewasbeschermingsmiddelen en biociden.
- 26. Ctgb. 2014. Toelatingsbesluit Admire 11483 N. 31 January 2014 Wageningen, The Netherlands. College voor de toelating van gewasbeschermingsmiddelen en biociden.
- 27. Anatra-Cordone M, Durkin P. 2005. Imidacloprid Human Health and Ecological Risk Assessment Final Report. USDA Forest Service.
- 28. US EPA. 2000-2008. EpiSuite 4.1. United States Environmental Protection Agency, http://www.epa.gov/oppt/exposure/pubs/episuite.htm.
- 29. BioByte. 2006. Bio-Loom for Windows. Claremont, USA. Biobyte Corporation.
- 30. Liu W, Zheng W, Ma Y, Liu KK. 2006. Sorption and degradation of imidacloprid in soil and water. J Environ Sci Health Part B Pesticides Food Contaminants and Agricultural Wastes 41, 623-634.

- 31. Moza PN, Hustert K, Feicht E, Kettrup A. 1998. Photolysis of imidacloprid in aqueous solution. Chemosphere 36, 497-502.
- 32. Wamhoff H, Schneider V. 1999. Photodegradation of imidacloprid. J Agric Food Chem 47, 1730-1734.
- 33. Zhou X, Sang W, Liu S, Zhang Y, Ge H. 2010. Modeling and prediction for the acute toxicity of pesticide mixtures to the freshwater luminescent bacterium Vibrio qinghaiensis sp.-Q67. J Environ Sci 22, 433-440.
- 34. Jemec A, Tisler T, Drobne D, Sepcic K, Fournier D, Trebse P. 2007. Comparative toxicity of imidacloprid, of its commercial liquid formulation and of diazinon to a non-target arthropod, the microcrustacean Daphnia magna. Chemosphere 68, 1408-1418.
- 35. Stoughton SJ, Liber K, Culp JM, Cessna A. 2008. Acute and chronic toxicity of imidacloprid to the aquatic invertebrates Chironomus tentans and Hyalella azteca under constant- and pulse-exposure conditions. Arch Environ Contam Toxicol 54, 662-673.
- 36. Chen XD, Culbert E, Hebert V, Stark JD. 2010. Mixture effects of the nonylphenyl polyethoxylate, R-11 and the insecticide, imidacloprid on population growth rate and other parameters of the crustacean, Ceriodaphnia dubia. Ecotoxicol Environ Saf 73, 132-137.
- 37. Pestana JLT, Loureiro S, Baird DJ, Soares AMVM. 2009. Fear and loathing in the benthos: Responses of aquatic insect larvae to the pesticide imidacloprid in the presence of chemical signals of predation risk. Aquat Toxicol 93, 138-149.
- 38. Ashauer R, Hintermeister A, Potthoff E, Eschera BI. 2011. Acute toxicity of organic chemicals to Gammarus pulex correlates with sensitivity of Daphnia magna across most modes of action. Aquat Toxicol 103, 38-45.
- 39. Böttger R, Schaller J, Mohr S. 2012. Closer to reality the influence of toxicity test modifications on the sensitivity of Gammarus roeseli to the insecticide imidacloprid. Ecotoxicol Environ Saf 81, 49-54.
- 40. Kreutzweiser D, Good K, Chartrand D, Scarr T, Thompson D. 2007. Non-target effects on aquatic decomposer organisms of imidacloprid as a systemic insecticide to control emerald ash borer in riparian trees. Ecotoxicol Environ Saf 68, 315-325.
- Kreutzweiser DP, Good KP, Chartrand DT, Scarr TA, Thompson DG.
 2008. Toxicity of the systemic insecticide, imidacloprid, to forest stream insects and microbial communities. Bull Environ Contam Toxicol 80, 211-214.
- 42. LeBlanc HMK, Culp JM, Baird DJ, Alexander AC, Cessna AJ. 2012. Single versus combined lethal effects of three agricultural insecticides on larvae of the freshwater insect *Chironomus dilutus*. Arch Environ Contam Toxicol 63, 378-390.
- 43. Alexander AC, Culp JM, Liber K, Cessna AJ. 2007. Effects of insecticide exposure on feeding inhibition in mayflies and oligochaetes. Environ Toxicol Chem 26, 1726-1732.
- 44. Overmyer JP, Mason BN, Armbrust KL. 2005. Acute toxicity of imidacloprid and fipronil to a nontarget aquatic insect, Simulium vittatum Zetterstedt cytospecies IS-7. Bull Environ Contam Toxicol 74, 872-879.
- 45. Böttger R, Feibicke M, Schaller J, Dudel G. 2013. Effects of low-dosed imidacloprid pulses on the functional role of the caged amphipod *Gammarus roeseli* in stream mesocosms. Ecotoxicol Environ Saf 93, 93-100.
- 46. CCME. 2007. Canadian Water Quality Guidelines: Imidacloprid Scientific Supporting Document. Winnipeg, Canada. Water Quality Task Group of the Canadian Council of Ministers of the Environment. Report PN 1388.

- 47. Ratte HT, Memmert A. 2003. Biological effects and fate of imidacloprid SL 200 in outdoor microcosm ponds. Ittingen, Switzerland. RCC Ltd. Report 811766 (WAT2003-633 in DAR).
- 48. Brock TCM. 2005. Evaluation of the report "Biological effects and fate of imidacloprid SL 200 in outdoor mircocosm ponds". Unpublished report. 25.2.2005. WAT2005-348.
- 49. EFSA. 2013. Guidance on tiered risk assessment for plant protection products for aquatic organisms in edge-of-field surface waters. EFSA Journal 11, 3290.
- 50. Colombo V, Mohr S, Berghahn R, Pettigrove VJ. 2013. Structural changes in a macrozoobenthos assemblage after imidacloprid pulses in aquatic field-based microcosms. Arch Environ Contam Toxicol in press.
- 51. Pestana JLT, Alexander AC, Culp JM, Baird DJ, Cessna AJ, Soares AMVM. 2009. Structural and functional responses of benthic invertebrates to imidacloprid in outdoor stream mesocosms. Environ Pollut 157, 2328-2334.
- 52. Alexander AC, Heard KS, Culp JM. 2008. Emergent body size of mayfly survivors. Freshwater Biol 53, 171-180.
- 53. Berghahn R, Mohr S, Hübner V, Schmiediche R, Schmiedling I, Svetich-Will E, Schmidt R. 2012. Effects of repeated insecticide pulses on macroinvertebrate drift in indoor stream mesocosms. Aquat Toxicol 122-123, 56-66.
- 54. Mohr S, Berghahn R, Schmiediche R, Hübner V, Loth S, Feibicke M, Mailahn W, Wogram J. 2012. Macroinvertebrate community response to repeated short-term pulses of the insecticide imidacloprid. Aquat Toxicol 110-111, 25-36.
- 55. Roessink I, Hartgers EM. 2013. Outdoor enclosure study to the effects of IMIDACLOPRID SL 200 on the mayfly Cloeon dipterum and its dissipation from water at two different light intensities. Wageningen, The Netherlands. Alterra Wageningen UR (University & Research centre). Report ALT.IR.2013.4 (BCS project ID EBNTN042). Confidential. Owner: Bayer CropScience AG; Interim report, November 2013.
- Van Vlaardingen PLA, Traas TP, Wintersen AM, Aldenberg T. 2004. ETX 2.0. A program to calculate Hazardous Concentrations and Fraction Affected, based on normally distributed toxicity data. Bilthoven, The Netherlands. National Institute for Public Health and the Environment. Report 601501028.
- 57. Kungolos A, Emmanouil C, Tsiridis V, Tsiropoulos N. 2009. Evaluation of toxic and interactive toxic effects of three agrochemicals and copper using a battery of microbiotests. Sci Total Env 407, 4610-4615.
- 58. Heimbach F. 1986. Growth inhibition of green algae (Scenedesmus subspicatus) caused by NTN 33893. Leverkusen, Germany. Bayer Crop Science. Report HBF/A1 27.
- 59. Lukančič S, Žibrat U, Mezek T, Jerebic A, Simčič T, Brancelj A. 2010. Effects of exposing two non-target crustacean species, Asellus aquaticus L., and Gammarus fossarum Koch., to atrazine and imidacloprid. Bull Environ Contam Toxicol 84, 85-90.
- 60. Hayasaka D, Korenaga T, Suzuki K, Sánchez-Bayo F, Goka K. 2012. Differences in susceptibility of five cladoceran species to two systemic insecticides, imidacloprid and fipronil. Ecotoxicology 21, 421-427.
- 61. Song MY, Stark JD, Brown JJ. 1997. Comparative toxicity of four insecticides, including imidacloprid and tebufenozide, to four aquatic arthropods. Environ Toxicol Chem 16(12), 2494-2500.
- 62. PSD. 1993. Food and Environment Protection Act, 1985, Part III. Control of Pesticides Regulations 1986. Evaluation of fully approved or

- provisionally approved products. Issue 73. Evaluation on imidacloprid. York, United Kingdom.
- 63. Loureiro S, Svendsen C, Ferreira ALG, Pinheiro C, Ribeiro F, Soares AMVM. 2010. Toxicity of three binary mixtures to Daphnia magna: comparing chemical modes of action and deviations from conceptual models. Environ Toxicol Chem 29, 1716-1726.
- 64. Agatz A, Cole TA, Preuss TG, Zimmer E, Brown CD. 2013. Feeding inhibition explains effects of imidacloprid on the growth, maturation, reproduction, and survival of Daphnia magna. Environ Sci Technol 47, 2909–2917.
- 65. Beketov MA, Liess M. 2008. Potential of 11 pesticides to initiate downstream drift of stream macroinvertebrates. Arch Environ Contam Toxicol 55, 247-253.
- 66. Paul A, Harrington LC, Scott JG. 2006. Evaluation of novel insecticides for control of dengue vector Aedes aegypti (Diptera: Culicidae). J Med Entomol 43(1), 55-60.
- 67. Riaz MA, Poupardin R, Reynaud S, Strode C, Ranson H, Davida J-P. 2009. Impact of glyphosate and benzo[a]pyrene on the tolerance of mosquito larvae to chemical insecticides. Role of detoxification genes in response to xenobiotics. Aquat Toxicol 93, 61-69.
- 68. Liu H, Cupp EW, Guo AG, Liu NN. 2004. Insecticide resistance in Alabama and Florida mosquito strains of Aedes albopictus. J Med Entomol 41, 946-952.
- 69. Becker D. 2011. Sensitivity distinctions of lotic insect larvae exposed to imidacloprid. Diploma Thesis at the chair of Environmental Biology and Chemodynamics (Institute for Environmental Research, Biology 5) at the Faculty of Mathematic, Computer Science and Natural Sciences at RWTH Aachen University (Rheinisch-Westfälischen Technischen Hochschule Aachen). Aachen, Germany.
- 70. Yokoyama A, Ohtsu K, Iwafune T, Nagai T, Ishihara S, Kobara Y, Horio T, Endo S. 2009. Sensitivity difference to insecticides of a riverine caddisfly, Cheumatopsyche brevilineata (Trichoptera: Hydropsychidae), depending on the larval stages and strains. J Pestic Sci 34, 21-26.
- 71. Azevedo-Pereira HMVS, Lemos MFL, Soares AMVM. 2011. Behaviour and growth of Chironomus riparius Meigen (Diptera: Chironomidae) under imidacloprid pulse and constant exposure scenarios. Water Air Soil Pollut 219, 215-224.
- 72. Azevedo-Pereira HMVS, Lemos MFL, Soares AMVM. 2011. Effects of imidacloprid exposure on Chironomus riparius Meigen larvae: Linking acetylcholinesterase activity to behaviour. Ecotoxicol Environ Saf 74, 1210-1215.
- 73. Liu HQ, Cupp EW, Micher KM, Guo AG, Liu NN. 2004. Insecticide resistance and cross-resistance in Alabama and Florida strains of Culex quinquefaciatus. J Med Entomol 41, 408-413.
- 74. Srinivasa Rao M, Murty USN, Gangadasu B, China Raju B, Ramesh CH, Bharat Khumar S, Jayathirtha Rao V. 2008. Larvicidal efficacy of neonicotinoid classes of compounds on Culex quinquefasciatus. J Entomol 5, 45-50.
- 75. Feng S, Kong Z, Wang X, Zhao L, Peng P. 2004. Acute toxicity and genotoxicity of two novel pesticides on amphibian, Rana N. Hallowell. Chemosphere 56, 457-463.
- 76. Gerhardt A. 2009. Screening the toxicity of Ni, Cd, Cu, ivermectin, and imidacloprid in a short-term automated behavioral toxicity test with Tubifex tubifex (Müller 1774) (Oligochaeta). Human Ecol Risk Ass 15, 27-40.

- 77. Pavlaki MD, Pereira R, Loureiro S, Soares AMVM. 2011. Effects of binary mixtures on the life traits of Daphnia magna. Ecotoxicol Environ Saf 74, 99-110.
- 78. Nyman A-M, Hintermeister A, Schirmer K, Ashauer R. 2013. The insecticide imidacloprid causes mortality of the freshwater amphipod Gammarus pulex by interfering with feeding behavior. PlosOne 8(5), e62472.
- 79. Ctgb. Toelatingsbesluit Admire-O-tec 12942 N. 27 July 2007. Wageningen, the Netherlands. College voor de toelating van gewasbeschermingsmiddelen en biociden.
- 80. Chang X, Zhai B, Wang B, Sun C. 2009. Effects of the mixture of avermectin and imidacloprid on mortality and developmental stability of Copera annulata (Odonata: Zygoptera) larvae. Biol J Linn Soc 96, 44-50.
- 81. Scheil V, Köhler H-R. 2009. Influence of nickel chloride, chlorpyrifos, and imidacloprid in combination with different temperatures on the embryogenesis of the zebrafish Danio rerio. Arch Environ Contam Toxicol 56, 238-243.
- 82. Sawasdee B, Köhler H-R. 2009. Embryo toxicity of pesticides and heavy metals to the ramshorn snail, Marisa cornuarietis (Prosobranchia). Chemosphere 75, 1539-1547.
- 83. Dell' Arciprete M, Santos-Juanes L, Arquez Sanz A, Vicente R, Amat AA, Furlong JP, Martirea DO, Gonzalez MC. 2009. Reactivity of hydroxyl radicals with neonicotinoid insecticides: mechanism and changes in toxicity. Photochem Photobiol Sci 8, 1016-1023.
- 84. Song MY, Brown JJ. 1998. Osmotic effects as a factof modifying insecticide toxicity on Aedes and Artemia. Ecotoxicol Environ Saf 41, 195-202.
- 85. Song MY, Brown JJ. 2006. Influence of fluctuating salinity on insecticide tolerance of two euryhaline arthropods. J Econ Entomol 99, 745-751.
- 86. Zhang Y, Mu J, Han J, Gu X. 2012. An improved brine shrimp larvae lethality microwell test method. Toxicol Mech Methods 22, 23-30.
- 87. Key P, Chung K, Siewicki T, Fulton M. 2007. Toxicity of three pesticides individually and in mixture to larval grass shrimp (Palaemonetes pugio). Ecotoxicol Environ Saf 68, 272-277.
- 88. Osterberg JS, Darnell KM, Blickley TM, Romano JA, Rittschof D. 2012. Acute toxicity and sub-lethal effects of common pesticides in post-larval and juvenile blue crabs, Callinectes sapidus. J Exp Mar Biol Ecol 424-425, 5-14.
- 89. EFSA. 2008. Conclusion regarding the peer review of the pesticide risk assessment of the active substance imidacloprid. EFSA Scientific Report 148, 1-120.
- 90. Ade CM, Boone MD, Puglis HJ. 2010. Effects of an insecticide and potential predators on Green frogs and Northern Cricket frogs. J Herpetol 44, 591-600.
- 91. De Jong FMW, Bakker FM, Brown K, Jilesen CJTJ, Posthuma-Doodeman CJAM, Smit CE, Van der Steen JJM, Van Eekelen GMA. 2006. Guidance for summarising and evaluating field studies with non-target arthropods. A guidance document of the Dutch Platform for the Assessment of Higher Tier Studies. Bilthoven, The Netherlands. National Institute for Public Health and the Environment. Report 601712006.
- 92. De Jong FMW, Van Beelen P, Smit CE, Montforts MHMM. 2006. Guidance for summarising earthworm field studies. A guidance document of the Dutch Platform for the Assessment of Higher Tier Studies. Bilthoven, The Netherlands. National Institute for Public Health and the Environment. Report 601506006.

- 93. Hayasaka D, Korenaga T, Sánchez-Bayo F, Goka K. 2012. Differences in ecological impacts of systemic insecticides with different physicochemical properties on biocenosis of experimental paddy fields. Ecotoxicol Environ Saf 21, 191-201.
- 94. Hayasaka D, Korenaga T, Suzuki K, Saito F, Sánchez-Bayo F, Goka K. 2012. Cumulative ecological impacts of two successive annual treatments of imidacloprid and fipronil on aquatic communities of paddy mesocosms. Ecotoxicol Environ Saf 80, 355-362.
- 95. Sanchez Bayo F, Goka K. 2005. Unexpected effects of zinc pyrithione and imidacloprid on Japanese medaka fish (Oryzias latipes). Aquat Toxicol 74, 285-293.
- 96. Sanchez Bayo F, Goka K. 2006. Ecological effects of the insecticide imidacloprid and a pollutant from antidandruff shampoo in experimental rice fields. Environ Toxicol Chem 25, 1677-1687.
- 97. Jinguji H, Thuyet DQ, Uéda T, Watanabe H. 2012. Effect of imidacloprid and fipronil pesticide application on Sympetrum infuscatum (Libellulidae: Odonata) larvae and adults. Paddy Wat Environ 11, 277-284.
- 98. Daam MA, Santos Pereira AC, Silva E, Caetano L, Cerejeira MJ. 2013. Preliminary aquatic risk assessment of imidacloprid after application in an experimental rice plot. Ecotoxicol Environ Saf 97, 78-85.

List of terms and abbreviations

AA-EQS Annual Average Environmental Quality Standard

ACR Acute to Chronic Ratio
ADI Acceptable Daily Intake
BCF Bioconcentration factor
CAR Competent Authority Report

CLP Classification Labelling and Packaging of substances

Ctgb College voor de toelating van gewasbeschermingsmiddelen en

biociden

DAR Draft Assessment Report

DT50 dissipation or degradation half-life time EC_x Concentration at which x% effect is observed

EFSA European Food Safety Authority EQS Environmental Quality Standard

ERL Environmental risk limit

HC5 Hazardous Concentration for 5% of the species

INS International and National Environmental Quality Standards for

Substances in the Netherlands

JG-MKN Jaargemiddelde milieukwaliteitsnorm

Koc Organic carbon-water partitioning coefficient

Kow Octanol-water partitioning coefficient

LCx Concentration at which x% mortality is observed MAC-EQS Maximum Acceptable Concentration for ecosystems

MAC-MKN Maximum Aanvaardbare Concentratie milieukwaliteitsnorm MAC-QS_{fw. eco} Maximum Acceptable Concentration for ecosystems in

freshwater

 $MAC\text{-}QS_{sw, eco}$ Maximum Acceptable Concentration for ecosystems in the

saltwater compartment

Marine species Species that are representative for marine and brackish water

environments and that are tested in water with salinity

> 0.5 ‰.

MKN milieukwaliteitsnorm NC Negligible Concentration

 NC_{fw} Negligible Concentration in freshwater NC_{sw} Negligible Concentration in saltwater

NOEAEC No Observed Ecosystem Adverse Effect Level

NOEC No Observed Effect Concentration

pKa Dissociation constant PPP Plant Protection Products

QS_{biota, hh food} Quality standard for based on human health expressed as

concentration in biota

 $QS_{\text{biota, secpois, fw}} \quad Quality \ standard \ for \ freshwater \ based \ on \ secondary \ poisoning$

expressed as concentration in biota

 $QS_{biota, \, secpois, \, sw}$ Quality standard for saltwater based on secondary poisoning

expressed as concentration in biota

QS_{dw. hh} Quality standard for water used for abstraction of drinking

water

 $\begin{array}{ll} QS_{\text{fw, eco}} & Quality \text{ standard for freshwater based on ecotoxicological data} \\ QS_{\text{fw, secpois}} & Quality \text{ standard for freshwater based on secondary poisoning} \\ QS_{\text{sw, eco}} & Quality \text{ standard for saltwater based on ecotoxicological data} \\ QS_{\text{sw, secpois}} & Quality \text{ standard for saltwater based on secondary poisoning} \end{array}$

QS_{water, hh food} Quality standard for freshwater and saltwater based on

consumption of fish and shellfish by humans

RIVM Rijksinstituut voor Volksgezondheid en Milieu

National Institute for Public Health and the Environment

 $\mathsf{SRC}_{\mathsf{eco}} \qquad \qquad \mathsf{Serious} \; \mathsf{Risk} \; \mathsf{Concentration} \; \mathsf{for} \; \mathsf{ecosystems}$

 $\begin{array}{ll} \text{SRC}_{\text{fw. eco}} & \text{Serious risk concentration for freshwater ecosystems} \\ \text{SRC}_{\text{sw. eco}} & \text{Serious risk concentration for saltwater ecosystems} \end{array}$

SSD Species Sensitivity Distribution TGD Technical Guidance Document

TWA Time Weighted Average

WFD Water Framework Directive (2000/60/EC)

Appendix 1. Detailed ecotoxicity data

Legend to co	lumn headings
Α	test water analysed Y(es)/N(o)
Test type	S = static; R = renewal; F = flow through; c = closed
Purity	refers to purity of active substance or content of active substance in formulation; ag = analytical grade; tg = technical grade
Test water	am = artificial medium; dtw = dechlorinated tap water; dw = deionised/dechlorinated/distilled water; nw = natural water; rw = reconstituted water; rtw = reconstituted
	tap water; tw = tap water
T	temperature
Ri	Reliability index according to [17]. Valid studies (Ri 2 or higher) are considered for EQS-derivation, depending on relevance and considering notes on data treatment
	(section 1.3.4)

Table A1.1 Acute ecotoxicity of imidacloprid for freshwater organisms

Species	Species	Α		Test	Purity	Test	Hardness	pH		Exp.	Crit.	Test	Value	Ri Note	Ref.
	properties		type	compound	[%]	water	CaCO₃ [mg/L]		[°C]	time		endpoint	[µg/L]		
Bacteria					[70]		[IIIg/L]		[C]				[µg/L]		
Vibrio fischeri	strain NRRL-B-11,177	Υ	S	imidacloprid	ag				15	30 min	EC50	bioluminescence	61900	2 1	[20]
Vibrio fischeri	strain NRRL-B-11,177	Υ	S	Confidor	200 g/L				15	30 min	EC50	bioluminescence	56000	2 1	[20]
Vibrio qinghaiensis sp.	Q67	N	S	imidacloprid	99.5%				22	15 min	EC50	bioluminescence	79255	2 2	[33]
Cyanobacteria															
Anabaena flos-aquae		Υ	S	NTN 33893 2F	21.6					96 h	EC50		32800	4 4	[27]
Algae															
Desmodesmus subspicatus		Υ	S	imidacloprid	ag				21	72 h	EC50	growth rate	389000	2 5	[20]
Desmodesmus subspicatus		Υ	S	Confidor	200 g/L				21	72 h	EC50	growth rate	116000	2 6	[20]
Pseudokirchneriella subcapitata	1	N	S	Confidor					24	72 h	EC50	growth	> 1E6	3 7	[57]
Pseudokirchneriella subcapitata	1	N	S	imidacloprid	98.6					72 h	EC50	biomass	> 100000	2 8	[19]
Pseudokirchneriella subcapitata	1	N	S	imidacloprid	98.6					72 h	EC50	growth rate	> 100000	2 8	[19]
Scenedesmus subspicatus	10000 cells/mL	N	S	imidacloprid	tg			8.2-9.1	23	72 h	EC50	biomass	> 10000	3 9	[19]
Scenedesmus subspicatus	10000 cells/mL	N	S	imidacloprid	tg			8.2-9.1	23	72 h	EC50	growth rate	> 10000	3 9	[19]
Scenedesmus subspicatus	10000 cells/mL	N	S	imidacloprid	92.8			8.1-9.2	23	96 h	EC50	growth rate	> 10000	3 10	[58]
Crustacea															
Asellus aquaticus	field collected	N		Confidor	200 g/L	am			10	1 h	NOEC	respiration	100	3 11	[59]
Asellus aquaticus	field collected	N		Confidor	200 g/L					24 h	EC50	immobility	800	3 12	[59]
Asellus aquaticus	field collected	N		Confidor	200 g/L					48 h	LC50	mortality	8500	3 12	[59]
Asellus aquaticus	field collected	N	S	SL product	200 g/L	rw		7.4-8.3	17.7-19.7	96 h	EC50	immobility	119	2 13	[5]
Asellus aquaticus	field collected	N	S	SL product	200 g/L	rw		7.4-8.3			EC10	immobility	24.7	2 13	[5]
Asellus aquaticus	field collected	N	S	SL product	200 g/L	rw			17.7-19.7		LC50	mortality	316	2 13	[5]
Asellus aquaticus	field collected	N	S	SL product	200 g/L			7.4-8.3	17.7-19.7	96 h	LC50	mortality	61.6	2 13	[5]
Ceriodaphnia dubia	< 24 h	Υ	S	Admire Pro	42.8%		80-100		25	48 h	LC50	mortality	2.07	2 14	[36]
Ceriodaphnia dubia	< 24 h old	N	R	Admire	200 g/L			7.8-7.9		48 h	EC50	immobility	571.62	3 15	[60]
Ceriodaphnia reticulata	< 24 h old	N	R	Admire	200 g/L	dtw		7.8-7.9		48 h	EC50	immobility		3 15	[60]
Chydorus sphaericus	collected from rice fields	N	S	imidacloprid	tg	tw		7.5-7.8		48 h	LC50	mortality	132700	3 16	[21]
Chydorus sphaericus	collected from rice fields	N	S	imidacloprid	tg	tw		7.5-7.8	22	48 h	EC50	immobility	2209	3 16	[21]

Species		Α		Test	Purity	Test	Hardness	pН	Т	Exp.	Crit.	Test	Value	Ri Note	Ref.
	properties		type	compound	5047	water	CaCO ₃		50.03	time		endpoint	F (1.3		
					[%]		[mg/L]	7.5.7.0	[°C]	40.1	FOFO		[µg/L]	2 47	FD47
Chydorus sphaericus	collected from rice fields		S	imidacloprid	tg	tw		7.5-7.8		48 h	EC50	immobility	832	2 17	[21]
Cypretta seuratti	collected from rice fields		S	imidacloprid	tg	tw		7.5-7.8		48 h	LC50	mortality	301	3 16	[21]
Cypretta seuratti	collected from rice fields		S	imidacloprid	tg	tw		7.5-7.8		48 h	EC50	immobility	16	3 16	[21]
Cypretta seuratti	collected from rice fields		S	imidacloprid	tg	tw		7.5-7.8		48 h	EC50	immobility	1	2 17	[21]
Cypridopsis vidua	collected from rice fields	_	S	imidacloprid	tg	tw		7.5-7.8		48 h	LC50	mortality	715	3 16	[21]
Cypridopsis vidua		N	S	imidacloprid	tg	tw		7.5-7.8		48 h	LC50	mortality	273	2 18	[21]
Cypridopsis vidua		N	S	imidacloprid	tg	tw		7.5-7.8		48 h	EC50	immobility	3	3 16	[21]
Cypridopsis vidua		N	S	imidacloprid	tg	tw		7.5-7.8		48 h	EC50	immobility	10	2 17	[21]
Daphnia magna	< 24 h	N	S	imidacloprid	tg	nw			20	48 h	LC50	mortality	17360	3 19	[61]
Daphnia magna	< 24 h	N	S	imidacloprid	tg	nw			27	48 h	LC50	mortality	10440	3 20	[61]
Daphnia magna	< 24 h	Υ	S	imidacloprid	95.4		160-180	8.3-8.4	20	48 h	EC50	immobility	85000	2 21	[19,62]
Daphnia magna	< 24 h	Υ	S	imidacloprid	95.4					48 h	EC50	immobility	> 32000	3 22	[62]
Daphnia magna		N	S	imidacloprid	tg	tw		7.5-7.8		48 h	LC50	mortality	64870	3 16	[21]
Daphnia magna		N	S	imidacloprid	tg	tw		7.5-7.8	22	48 h	EC50	immobility	6029	3 16	[21]
Daphnia magna	< 24 h	N	S	Confidor					20	48 h	EC50	immobility	64600	4 23	[57]
Daphnia magna		N	S	imidacloprid						48 h	EC50	immobility	97000	3 24	[63]
Daphnia magna	4-5 d	N	S	imidacloprid						24 h	EC50	feeding activity	3700	3 25	[63]
Daphnia magna	< 24 h	Υ	S	imidacloprid	ag				21	48 h	EC50	immobility	56600	2 26	[20]
Daphnia magna	< 24 h	Υ	S	Confidor	200 g/L	_			21	48 h	EC50	immobility	30000	2 27	[20]
Daphnia magna	< 24 h old	N	R	Admire	200 g/L	dtw		7.8-7.9	21	48 h	EC50	immobility	43265	3 28	[60]
Daphnia magna	< 24 h, 0.94 mm	Υ	R	imidacloprid	99.0%	am		7.4-8.2		7 d	NOEC	body length	1200	2 29	[64]
Daphnia magna	< 24 h, 0.94 mm	Υ	R	imidacloprid	99.0%	am		7.4-8.2	20	7 d	NOEC	time until maturation	4000	2 30	[64]
Daphnia magna	< 24 h, 0.94 mm	Υ	R	imidacloprid	99.0%	am		7.4-8.2	20	7 d	NOEC	# offspring	1300	2 30	[64]
Daphnia magna	< 24 h, 0.94 mm	Υ	R	imidacloprid	99.0%	am		7.4-8.2	20	7 d	EC50	body length	21727	2 31	[64]
Daphnia magna	< 24 h, 0.94 mm	Υ	S	imidacloprid	99.0%	am		7.4-8.2		24 h	EC50	feeding	1830	2 32	[64]
Daphnia magna	< 24 h, 0.94 mm	Υ	S	imidacloprid	99.0%	am		7.4-8.2		24 h	LC50	mortality	> 100000		[64]
Daphnia pulex		N	R	Admire	200 g/L			7.8-7.9		48 h	EC50	immobility	36872	3 28	[60]
Gammarus fossatum		N		Confidor	200 g/L				10	1 h		respiration	≥ 10	3 11	[59]
Gammarus fossatum		N		Confidor	200 g/L					24 h	EC50	immobility	70	3 12	[59]
Gammarus fossatum	field collected	N		Confidor	200 g/L					48 h	LC50	mortality	800	3 12	[59]
Gammarus pulex	adults, field collected	Y	S	14C-imidacloprid	٠.	_	250		13	48 h	EC50	immobility	110	2 34	[38]
Gammarus pulex	adults, field collected	Y	S	14C-imidacloprid			250		13	96 h	EC50	immobility	131	2 34	[38]
Gammarus pulex	field collected	N	S	imidacloprid	ag	am	180	7.4	15	48 h	LC50	mortality	270	3 35	[65]
Gammarus pulex	field collected	N	S	SL product	200 g/L		100		17.7-19.7		EC50	immobility	18.3	3 36	[5]
Gammarus pulex		N	S	SL product	200 g/L		1		17.7-19.7		EC10	immobility	3.63	3 36	[5]
Gammarus pulex	field collected	N	S	SL product	200 g/L		+		17.7-19.7		LC50	mortality	263	3 36	[5]
Gammarus pulex		N	S	SL product	200 g/L		+		17.7-19.7		LC10	mortality	99.5	3 36	[5]
Gammarus roeseli	field collected in autumn:		S	imidacloprid	200 g/L	am	-	7.4-6.3	17.7-19.7	96 h	EC50	immobility	129.5	2 37	[39]
Gaillilarus roeseli	juveniles; 6 mm	T	5	ппиасторпи		alli		1.1	17	90 11	EC30	iiiiiiobility	129.5	2 37	[39]
Gammarus roeseli	field collected in autumn;	V	S	imidacloprid	+	am	+	7.7	17	96 h	EC10	immobility	98.4	2 38	[39]
Gairiniarus roeseir	juveniles; 6 mm	['	3	iiiiiaaciopiia		aiii		/./	1,	70 11	LCIU	iiiiiiobility	70.4	2 30	[33]
Gammarus roeseli	field collected in autumn:	~	S	imidacloprid		am		7.7	17	96 h	EC50	immobility	86.14	2 39	[39]
Gaiiiiiai us Toeseii	juveniles; 6 mm	'	3	iiiiiuaciopiiu		aiii		1.1	1/	30 II	LCJU	iiiiiiobility	00.14	2 39	[25]
Gammarus roeseli	field collected in autumn:	V	S	imidacloprid	1	am	 	7.7	17	96 h	EC10	immobility	6	2 40	[39]
Gaiiiiilarus roeseii	,	ľ	5	iiiiiuaciopiiu		alli		1.1	1/	וו סכ	ECIO	IIIIIIODIIILY	U	2 40	[39]
	juveniles; 6 mm	L					1					1	L		

Species		Α		Test	Purity	Test	Hardness	рН	Т	Exp.	Crit.	Test	Value	Ri	Note	Ref.
	properties		type	compound	[%]	water	CaCO₃ [mg/L]		[°C]	time		endpoint	[µg/L]			
Gammarus roeseli	field collected in autumn:	Υ	S	imidacloprid	[/0]	aw	[IIIg/L]	7.8	12	96 h	EC50	immobility	14.2	2	41	[39]
	juveniles; 6 mm	-										,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		_		[]
Gammarus roeseli	field collected in autumn;	Υ	S	imidacloprid		aw		7.8	12	96 h	EC10	immobility	1.4	2	42	[39]
	juveniles; 6 mm											-				
Gammarus roeseli	field collected in spring;	Υ	S	imidacloprid		aw		7.8	12	96 h	EC50	immobility	1.94	2	43	[39]
	early adults; 9 mm															
Gammarus roeseli		Y	S	imidacloprid		aw		7.8	12	96 h	EC50	immobility	28.9	2	44	[39]
	adults; 11 mm	.,	-					7.0	4.0	06.1	E040		2.6	_	4-	5001
Gammarus roeseli		Υ	S	imidacloprid		aw		7.8	12	96 h	EC10	immobility	2.6	2	45	[39]
G	adults; 11 mm	Υ	S	to at the other wat th				7.0	12	96 h	FCFO	torran a lattitura	14.0	2	1.0	[20]
Gammarus roeseli	field collected in spring; adults; 11 mm	Y	5	imidacloprid		aw		7.8	12	96 N	EC50	immobility	14.8	2	46	[39]
Gammarus roeseli		Υ	S	imidacloprid		aw		7.8	12	96 h	EC10	immobility	1	2	47	[39]
Gaiiiiiarus roeseii	adults; 11 mm	ī	3	ппиасторпи		aw		7.0	12	90 11	ECIU	IIIIIIODIIICy	1	3	47	[39]
Gammarus roeseli		N	S	not spec.		rw			17.7	26 h	NOEC	drift	≥ 12	3	48	[53]
Hyalella azteca	2-3 mm juveniles	Y	S	imidacloprid		1 VV			17.7	96 h	LC50	mortality	526	2		[19,27]
Hyalella azteca	2-3 mm juveniles	Y	S	imidacloprid						96 h	EC50	immobility	55		50	[19,27]
Hyalella azteca		Y	S	imidacloprid						96 h	NOEC	immobility	0.35	2		[19,27]
Hyalella azteca	juveniles, 2-9 d	Y	R	imidacioprid	99.2%	ftw	133	8.2	24	96 h	LC50	mortality	65.4	3	5U E1	[35]
-		Υ	_		240 a/l	_	133	8.2	24	96 h	LC50	'	17.4	3		[35]
Hyalella azteca	Jan 20111127 = 2 4	Υ	R S	Admire Admire	240 g/l		133	8.2	24	96 h	NOEC	mortality mortality	17.4 ≥ 11.93	2		[35]
Hyalella azteca	juveniles, 2-9 d	Y	S	Admire	240 g/l		133	8.2	24	96 h	NOEC		1.15	2		
Hyalella azteca	juveniles, 2-9 d	Υ	S	Admire	240 g/l		133	8.2	24	96 h	EC50	growth	9.83	3	54	[35] [35]
Hyalella azteca Hyalella azteca	juveniles, 2-9 d juveniles, 2-9 d	Υ	S	Admire	240 g/l		133	8.2	24	96 h	LC50	growth mortality	9.83	3		[35]
· ·	Jan 2011 20 4	Υ			J,	_	133	8.2	24	96 h			3.53	2		[35]
Hyalella azteca Hyalella azteca	juveniles, 2-9 d juveniles, 2-9 d	Υ	S	Admire Admire	240 g/l 240 g/l		133	8.2	24	96 h	NOEC NOEC	mortality growth	3.53 ≥ 11.93	2	5/	[35]
· ·	,	N	S	imidacloprid			133	7.5-7.8		48 h	LC50	mortality	517		16	[21]
Ilyocypris dentifera Ilyocypris dentifera		N	S		tg	tw		7.5-7.8			LC50		214	2		
Ilyocypris dentifera		N	S	imidacloprid imidacloprid	tg	tw		7.5-7.8		48 h 48 h	EC50	mortality immobility	3	3		[21] [21]
Ilyocypris dentifera		N	S	imidacloprid	tg	tw		7.5-7.8		48 h	EC50	immobility	3	2		[21]
Moina macrocopa		N	R		tg 200 a/l			7.8-7.9		48 h	EC50	immobility	45271	3		[60]
Insecta	< 24 ft 0ld	IN	K	Admire	200 g/I	Latw		7.8-7.9	21	48 N	ECSU	immobility	452/1	3	28	[60]
Aedes aegypti	4th instar	N	S	imidacloprid	97.4	dw			25	72 h	LC50	mortality	84	3	ΕO	[66]
Aedes aegypti Aedes aegypti		N	3	imidacioprid	97.4	tw			23	72 h	LC50	mortality	819.5	3		[67]
Aedes aegypti (L.)		N	S	imidacioprid	ta				20	48 h	LC50	mortality	45	3		[61]
		N	S		tg	am			27	48 h	LC50	mortality	45	3		[61]
Aedes albanistus	,		S	imidacloprid	tg 97.7	am tw	-		25	48 n 24 h	LC50	mortality	600	3		[68]
Aedes albopictus Aedes albopictus	4th instar, strain MAmAal 4th instar, strain HAmAal		S	imidacloprid imidacloprid	97.7	tw			25	24 h	LC50	mortality	300	3		[68]
Aedes albopictus Aedes albopictus		N	S	imidacioprid	97.7	tw			25	24 h	LC50	mortality	800	3		[68]
'	VBFmAal			'								,				
Aedes albopictus	4th instar, strain SFmAal		S	imidacloprid	97.7	tw			25	24 h	LC50	mortality	600	3		[68]
Aedes albopictus	4th instar, strain Ikaken		S	imidacloprid	97.7	tw			25	24 h	LC50	mortality	500	3		[68]
Baetis rhodani	,	N	S	imidacloprid	ag	am	180	7.4	15	48 h	LC50	mortality	8.49	3		[65]
Baetis rhodani	large larvae, field collected, 0.51 mg, 5.77 mm	N	S	imidacloprid	ag	am		7.8-8.1	12	96 h	LC50	mortality	41.23	3	61	[69]

Species	D P C C C C C	Α		Test	Purity	Test	Hardness	pН	Т	Exp.	Crit.	Test	Value	Ri Note	Ref.
	properties		type	compound	F0/ 7	water	CaCO ₃		F0.C3	time		endpoint	F (1. 7		
Dootie wheelen:	laura laura a field	N.	_	inai da alamii d	[%]		[mg/L]	7001	[°C]	0C h	FCF0	ing an a bilib.	[µg/L]	2 (1	FC01
Baetis rhodani	large larvae, field collected, 0.51 mg, 5.77 mm	N	S	imidacloprid	ag	am		7.8-8.1	12	96 h	EC50	immobility	5.21	3 61	[69]
Baetis rhodani	small larvae, field collected, 0.10 mg, 3.25 mm	N	S	imidacloprid	ag	am		7.8-8.1	12	96 h	LC50	mortality	3.85	3 61	[69]
Baetis rhodani	small larvae, field collected, 0.10 mg, 3.25 mm	N	S	imidacloprid	ag	am		7.8-8.1	12	96 h	EC50	immobility	1.72	3 61	[69]
Caenis horaria	field collected	N	S	SL product	200 g/L	rw		7.4-8.3	17.7-19.7	96 h	LC50	mortality	6.68	2 13	[5]
Caenis horaria	field collected	N	S	SL product	200 g/L	rw		7.4-8.3	17.7-19.7	96 h	LC10	mortality	2.55	2 13	[5]
Caenis horaria	field collected	N	S	SL product	200 g/L	rw		7.4-8.3	17.7-19.7	96 h	EC50	immobility	1.77	2 13	[5]
Caenis horaria	field collected	N	S	SL product	200 g/L	rw		7.4-8.3	17.7-19.7	96 h	EC10	immobility	0.325	2 13	[5]
Centroptilum triangulifer	larvae, <24 h old	N	S	imidacloprid	ag	am		7.4-7.5	19-22	72 h	LC50	mortality	8.88	3 62	[69]
Centroptilum triangulifer	larvae, <24 h old	N	S	imidacloprid	ag	am		7.4-7.5	19-22	72 h	EC50	immobility	4.98	3 62	[69]
Chaoborus obscuripes	field collected	N	S	SL product	200 g/L	rw		7.4-8.3	17.7-19.7	96 h	EC50	immobility	284	2 13	[5]
Chaoborus obscuripes	field collected	N	S	SL product	200 g/L			7.4-8.3	17.7-19.7	96 h	EC10	immobility	223	2 13	[5]
Chaoborus obscuripes	field collected	N	S	SL product	200 g/L	rw		7.4-8.3	17.7-19.7	96 h	LC50	mortality	294	2 13	[5]
Chaoborus obscuripes	field collected	N	S	SL product	200 g/L	rw			17.7-19.7		LC10	mortality	178	2 13	[5]
	1st instar larvae, strain M, < 24 h	N	S	imidacloprid	ag .	dtw			20	24 h	EC50	immobility	6.6	3 63	[70]
		N	S	imidacloprid	ag	dtw			20	24 h	EC50	immobility	11	3 63	[70]
Cheumatopsyche brevilineata	3rd instar larvae, strain	N	S	imidacloprid	ag	dtw			20	24 h	EC50	immobility	21	3 63	[70]
Cheumatopsyche brevilineata	4th instar larvae, strain M	N	S	imidacloprid	ag	dtw			20	24 h	EC50	immobility	21	3 64	[70]
Cheumatopsyche brevilineata	5th instar larvae, strain M	N	S	imidacloprid	ag	dtw			20	24 h	EC50	immobility	38	3 64	[70]
Cheumatopsyche brevilineata	1st instar larvae, strain K, < 24 h	N	S	imidacloprid	ag	dtw			20	24 h	EC50	immobility	7	3 64	[70]
Cheumatopsyche brevilineata	2nd instar larvae, strain k	N	S	imidacloprid	ag	dtw			20	24 h	EC50	immobility	10	3 64	[70]
	3rd instar larvae, strain k		S	imidacloprid	ag	dtw			20	24 h	EC50	immobility	20	3 64	[70]
	4th instar larvae, strain k		S	imidacloprid	ag	dtw			20	24 h	EC50	immobility	20	3 64	[70]
Cheumatopsyche brevilineata	5th instar larvae, strain k		S	imidacloprid	ag	dtw			20	24 h	EC50	immobility	37.9	3 65	[70]
Chironomus dilutus	larvae, 10 d old	Υ		Admire 240F		dgw			23	96 h	LC50	mortality	2.65	2 66	[42]
Chironomus riparius		N	S	Confidor	200 g/L		250		20	96 h	EC50	immobility	12.94	3 67	[37]
Chironomus riparius	larvae, 6 d, 2nd instar	N	S	Confidor	200 g/L	am	250		20	24 h	NOEC	respiration	< 0.4	3 68	[37]
Chironomus riparius	larvae, 4 d, 2nd instar	Υ	R	Confidor	200 g/L					96 h	NOEC		0.74	3 69	[71]
Chironomus riparius	larvae, 4 d, 2nd instar	Υ	R	Confidor	200 g/L					96 h	NOEC	locomotion, ventilation	0.74	3 70	[71]
Chironomus riparius	larvae, 4 d, 2nd instar	Υ	R	Confidor	200 g/L					96 h	NOEC	growth	≥ 2.15	3 71	[71]
Chironomus riparius	larvae, 4 d, 2nd instar	Υ	R	Confidor	200 g/L					96 h	NOEC	locomotion, ventilation		3 71	[71]
Chironomus riparius	larvae, 7 d	N	S	Confidor	200 g/L					48 h	LC50	mortality	19.9	3 72	[71]
Cili didilus riparius														3 73	[19]

Species	Species	Α		Test	Purity	Test	Hardness	рН	Т	Exp.	Crit.	Test	Value	Ri	Note	Ref.
	properties		type	compound	[%]	water	CaCO₃ [mg/L]		[°C]	time		endpoint	[µg/L]			
Chironomus riparius	larvae, 10 d old, late 3rd	Υ	R	Confidor	200 g/L	. rw	[1119/ =]		ر ح ا	96 h	NOEC	locomotion	0.55	3	74	[72]
	instar				J. 3,											
Chironomus riparius	larvae, 10 d old, late 3rd instar	Y	R	Confidor	200 g/L	. rw				96 h	NOEC	ventilation	0.3	3	74	[72]
Chironomus riparius	larvae, 10 d old, late 3rd instar	Y	R	Confidor	200 g/L	. rw				96 h	NOEC	ACh activity	0.55	3	74	[72]
Chironomus riparius	late instar	N	S	not spec.		rw			17.7	26 h	NOEC	drift	< 12		75	[53]
Chironomus tentans	2nd instar	Υ	R	imidacloprid	95%					96 h	LC50	mortality	10.5		76	[27]
Chironomus tentans	larvae, 7 d	Υ	R	Admire	240 g/L	. ftw	140	8.2	24	96 h	LC50	mortality	5.4	3	77	[35]
Chironomus tentans	larvae, 7 d	Υ	R	imidacloprid	99.2%	ftw	140	8.2	24	96 h	LC50	mortality	5.75		78	[35]
Chironomus tentans	larvae, 7 d	Υ	R	Admire	240 g/L		140	8.2	24	96 h	NOEC	mortality	≥ 3.47		79	[35]
Chironomus tentans	larvae, 7 d	Υ	R	Admire	240 g/L		140	8.2	24	96 h	NOEC	mortality	≥ 3.47		79	[35]
Cloeon dipterum		N	S	SL product	200 g/L				17.7-19.7		EC50	immobility	1.02		13	[5]
Cloeon dipterum	field collected	N	S	SL product	200 g/L				17.7-19.7		EC10	immobility	0.100		13	[5]
Cloeon dipterum		N	S	SL product	200 g/L				17.7-19.7		LC50	mortality	26.3		13	[5]
Cloeon dipterum	field collected	N	S	SL product	200 g/L	rw			17.7-19.7	96 h	LC10	mortality	6.16		13	[5]
Cloeon dipterum	large larvae, 0.65 mg	N	S	imidacloprid	ag	am		7.9-8.0	9	96 h	LC50	mortality	104.63		80	[69]
Cloeon dipterum	large larvae, 0.65 mg	N	S	imidacloprid	ag	am		7.9-8.0	9	96 h	EC50	immobility	43.03		80	[69]
Cloeon dipterum	small larvae, 0.13 mg	N	S	imidacloprid	ag	am		7.9-8.0	9	96 h	LC50	mortality	100		80	[69]
Cloeon dipterum	small larvae, 0.13 mg	N	S	imidacloprid	ag	am		7.9-8.0	9	96 h	EC50	immobility	43.33		80	[69]
Cloeon dipterum	late instar; field collected	N	S	not spec.		rw			17.7	26 h	NOEC	drift	≥ 12		48	[53]
Culex quinquefasciatus	4th instar, VBFmCq	N	S	imidacloprid	0.977	tw			25	24 h	LC50	mortality	300	3	59	[73]
Culex quinquefasciatus	4th instar, HAmCq	N	S	imidacloprid	0.977	tw			25	24 h	LC50	mortality	200		59	[73]
Culex quinquefasciatus	4th instar, MAmCq	N	S	imidacloprid	0.977	tw			25	24 h	LC50	mortality	400		59	[73]
Culex quinquefasciatus	4th instar, S-Lab	N	S	imidacloprid	0.977	tw			25	24 h	LC50	mortality	40	3	59	[73]
Culex quinquefasciatus	4th instar larvae	N	S	imidacloprid		tw			27	24 h	LC50	mortality	5	3	81	[74]
Epeorus assimilis	large larvae, 9.74 mg	N	S	imidacloprid	ag	am		7.6-7.9	13	96 h	LC50	mortality	52.33		82	[69]
Epeorus assimilis	large larvae, 9.74 mg	N	S	imidacloprid	ag	am		7.6-7.9		96 h	EC50	immobility	1.07		82	[69]
Epeorus assimilis	small larvae, 7.15 mg	N	S	imidacloprid	ag	am		7.2-7.8	4	96 h	LC50	mortality	20.89	3	83	[69]
Epeorus assimilis	small larvae, 7.15 mg	N	S	imidacloprid	ag	am		7.2-7.8	4	96 h	EC50	immobility	5.06	3	83	[69]
Epeorus longimanus	larvae, early instar, 3 mm, collected from field	Υ	S	Admire	240 g/L	dgw		8.1	20	24 h	LC50	mortality	2.1	2	84	[43]
Epeorus longimanus	larvae, late instar, 7.5 mm, collected from field	Y	S	Admire	240 g/L	dgw		8.1	20	24 h	LC50	mortality	2.1	2	85	[43]
Epeorus longimanus	larvae, late instar, 7.5 mm, collected from field	Y	S	Admire	240 g/L	dgw		8.1	20	96 h	LC50	mortality	0.65	2	86	[43]
Epeorus longimanus	larvae, late instar, 7.5 mm, collected from field	Y	S	Admire	240 g/L	dgw		8.1	20	24 h	NOEC	feeding rate	1	2	87	[43]
Epeorus longimanus	larvae, late instar, 7.5 mm, collected from field	Y	S	Admire	240 g/L	dgw		8.1	20	24 h	NOEC	feeding rate	< 0.1-0.5	3	88	[43]
Habrophlebia lauta	large larvae, field collected, 0.65 mg	N	S	imidacloprid	ag	am		7.8-8.6	13	96 h	LC50	mortality	179.92	3	89	[69]
Habrophlebia lauta	large larvae, field collected, 0.65 mg	N	S	imidacloprid	ag	am		7.8-8.6	13	96 h	EC50	immobility	34.65	3	89	[69]
Habrophlebia lauta	small larvae, field collected, 0.17 mg	N	S	imidacloprid	ag	am		7.8-8.6	13	96 h	LC50	mortality	57.62	3	89	[69]

Species	Species	А		Test .	Purity	Test	Hardness	рН	Т	Exp.	Crit.	Test	Value	Ri	Note	Ref.
	properties		type	compound	[%]	water	CaCO ₃		[°C]	time		endpoint	Fug/L1			
Habrophlebia lauta	small larvae, field	N	S	imidacloprid	ag	am	[[IIIg/L]	7.8-8.6	13	96 h	EC50	immobility	[µg/L] 31.18	3	80	[69]
Паргоринеріа іаціа	collected, 0.17 mg	IN	3	ппиасторпи	ay	alli		7.0-0.0	13	90 11	LC30	IIIIIIODIIILY	31.10	3	09	[69]
Hydropsyche pellucidula	larvae, 3.44 mg	N	S	imidacloprid	ag	am		7.7-8.0	12	96 h	LC50	mortality	44.93	3	90	[69]
Hydropsyche pellucidula	larvae, 3.44 mg	N	S	imidacloprid	ag	am		7.7-8.0		96 h	EC50	immobility	23.07	3		[69]
Leuctra sp.	larvae, 0.64 mg	N	S	imidacloprid	ag	am		7.5-8.0		96 h	LC50	mortality	247.09	3		[69]
Leuctra sp.	larvae, 0.64 mg	N	S	imidacloprid	ag	am		7.5-8.0		96 h	EC50	immobility	8.57	3		[69]
Limnephilidae	field collected	N	S	SL product	200 g/l				17.7-19.7		EC50	immobility	1.79	2		[5]
Limnephilidae	field collected	N	S	SL product	200 g/l				17.7-19.7		EC10	immobility	0.532	2	13	[5]
Limnephilidae	field collected	N	S	SL product	200 g/l				17.7-19.7		LC50	mortality	25.7	2		[5]
Limnephilidae	field collected	N	S	SL product	200 g/l				17.7-19.7		LC10	mortality	9.86	2		[5]
Micronecta spp.	field collected	N	S	SL product	200 g/l				17.7-19.7		EC50	immobility	10.8	3		[5]
Micronecta spp.	field collected	N	S	SL product	200 g/l				17.7-19.7		EC10	immobility	9.41	3		[5]
Micronecta spp.	field collected	N	S	SL product	200 g/l				17.7-19.7		LC50	mortality	28.2	3		[5]
Micronecta spp.	field collected	N	S	SL product	200 g/l				17.7-19.7		LC10	mortality	8.857	3		[5]
Notonecta spp.	field collected	N	S	SL product	200 g/l				17.7-19.7		EC50	immobility	18.2	2	13	[5]
Notonecta spp.	field collected	N	S	SL product	200 g/l				17.7-19.7		EC10	immobility	3.00	2		[5]
Notonecta spp.	field collected	N	S	SL product	200 g/l	_			17.7-19.7		LC50	mortality	> 10000	2		[5]
Notonecta spp.	field collected	N	S	SL product	200 g/l				17.7-19.7		LC10	mortality	> 10000	2		[5]
Plea minutissima	field collected	N	S	SL product	200 g/l				17.7-19.7		EC50	immobility	35.9	2		[5]
Plea minutissima	field collected	N	S	SL product	200 g/l				17.7-19.7		EC10	immobility	30.4	2		[5]
Plea minutissima	field collected	N	S	SL product	200 g/l	_			17.7-19.7		LC50	mortality	37.5	2	13	[5]
Plea minutissima	field collected	N	S	SL product	200 g/l	_			17.7-19.7		LC10	mortality	32.3	2	13	[5]
Pteronarcys comstocki	nymphs, 20 mm	Y	S	Admire	240 g/l			7.4 0.5	14.5	3 x 24 h		feeding rate	1.63	2	93	[51]
Pteronarcys comstocki	nymphs, 20 mm	Y	S	Admire	240 g/l				20	24 h	NOEC	O2 consumption	2	2	94	[51]
Sericostoma vittatum	larvae, field collected	N	S	Confidor	200 g/l		250		20	96 h	EC50	immobility	47.22	3		[37]
Sericostoma vittatum	larvae, field collected	N	S	Confidor	200 g/l		250		20	24 h	NOEC	respiration	1.9	3		[37]
Sericostoma vittatum	larvae, field collected	Y	R	Confidor	200 g/l		250		20	72 h		burrowing behaviour	2.5	2		[37]
Sialis lutaria	field collected	N	S	SL product	200 g/l		230	7 4-8 3	17.7-19.7		EC50	immobility	50.6	2		[5]
Sialis lutaria	field collected	N	S	SL product	200 g/l				17.7-19.7		EC10	immobility	15.7	2	13	[5]
Sialis lutaria	field collected	N	S	SL product	200 g/l				17.7-19.7		LC50	mortality	>10000	2		[5]
Sialis lutaria	field collected	N	S	SL product	200 g/l				17.7-19.7		LC10	mortality	>10000	2		[5]
Simulium latigonium	larvae, collected from	N	S	imidacloprid	ag	am	180	7.4	15	48 h	LC50	mortality	3.73	3		[65]
and in large man.	mesocosm	' '		aac.opa	" 9	u	200				2000		5.75			[00]
Simulium vittatum	5th instar	Υ	S	imidacloprid	98%	rw		7.3-7.7	20	48 h	LC50	mortality	6.75	2	98	[44]
Simulium vittatum	5th instar	Y	S	imidacloprid	98%	rw		7.3-7.7		48 h	LC50	mortality	8.25		99	[44]
Simulium vittatum	5th instar	Y	S	imidacloprid	98%	rw		7.3-7.7		48 h	LC50	mortality	9.54	2		[44]
Siphonoperla sp.	larvae, 0.55 mg	N	S	imidacloprid	ag	am		7.5-8.0		96 h	LC50	mortality	883.89	3		[69]
Siphonoperla sp.	larvae, 0.55 mg	N	S	imidacloprid	ag	am		7.5-8.0		96 h	EC50	immobility	8.63	3		[69]
Amphibia									-					Ĭ	-	[20]
Rana limnocharis	1 month old	N	R	imidacloprid	> 95%	dw			20	96 h	LC50	mortality	82000	3	100	[27,75]
Rana N. Hallowell	1.5 months old	N	R	imidacloprid	> 95%				20	96 h	LC50	mortality	129000		100	[27,75]
Pisces			1.		. 5570									Ĭ		[,,.]
Danio rerio		Υ	S	imidacloprid	ag	nw	140	8.4	21	96 h	LC50	mortality	241000	2	101	[20]
Danio rerio		Y	S	Confidor	200 g/l		140	8.4	21	96 h	LC50	mortality	214000		101	[20]
Leuciscus idus melanotus		Y	S	imidacloprid	95.3	1	230	8.1	21	96 h	LC50	mortality	237000		102	[19]
Lepomis macrochirus	27 mm, 0.46 g	Y	S	imidacloprid	95		46	7.4	22	96 h	LC50	mortality	> 105000			[19,27]

Species	Species	Α	Test	Test	Purity	Test	Hardness	рН	Т	Exp.	Crit.	Test	Value	Ri Note	Ref.
	properties		type	compound		water	CaCO ₃			time		endpoint			
					[%]		[mg/L]		[°C]				[µg/L]		
Oncorhynchus mykiss	5.3 cm, 1.3 g	N	S	imidacloprid	95.3		230	8.0-8.1	15.4	96 h	LC50	mortality	211000	2 104	[19]
Oncorhynchus mykiss	4.4 cm, 1.07 g	Υ	S	imidacloprid	95		40-48	7.0-7.9	12	96 h	LC50	mortality	> 83000	3 105	[19]
Annelida															
Lumbriculus variegatus	2.5 cm, 1.2 mg	Υ	S	Admire	240 g/L	dgw		8.1	20	96 h	EC50	immobility	6.2	2 106	
Lumbriculus variegatus	2.5 cm, 1.2 mg	Υ	S	Admire	240 g/L	dgw		8.1	20	24 h	NOEC	egestion rate	≥ 10	3 107	[43]
Lumbriculus variegatus	2.5 cm, 1.2 mg	Υ	S	Admire	240 g/L	dgw		8.1	20	24 h	NOEC	egestion rate	0.1-1	3 108	[43]
Tubifex tubifex	adult, 4 cm long, Ø 1-2	N	S	imidacloprid		am	62	7	20	24 h	EC50	locomotory behaviour	90	3 109	[76]
	cm														
Tubifex tubifex	adult, 4 cm long, Ø 1-2	N	S	imidacloprid		am	62	7	20	24 h	LC50	mortality	320	3 109	[76]
	cm														

- Marine species, but tested in distilled water. Stablity of test concentrations in distilled water checked for 21 d at 21°C, room light. At 70 mg/L and lower stable for 21 d, at 105 and 140 mg/L stable for 17 d, thereafter decline to 84 and 76% of nominal, respectively.
- 2 Solvent 1% DMSO, solvent control included; no analysis of test concentrations, but short exposure time
- 4 Based on mean measured concentrations. Study previously assigned Ri2, but information on test conditions and test parameter are not available.
- Test probably performed according to ISO guideline. Stablity of test concentrations in distilled water checked for 21 d at 21°C, room light. At 70 mg/L and lower stable for 21 d, at 105 and 140 mg/L stable for 17 d, thereafter decline to 84 and 76% of nominal, respectively. Cells counted only at start and 72 h, initial cell density not reported.
- Test probably performed according to ISO guideline. Stablity of test concentrations in distilled water checked for 21 d at 21°C, room light. At 70 mg/L and lower stable for 21 d, at 105 and 140 mg/L stable for 17 d, thereafter decline to 84 and 76% of nominal, respectively. Toxicity of formulation is more than 3 times higher than that of active substance, preference is given to test with active. Sovent of formulation included in control tests. Cells counted only at start and 72 h, initial cell density not reported.
- 7 Concentrations not measured, test under continuous light. No details on test water. Endpoint given as growth inhibition, not clear if growth rate or biomass is meant, test was performed according to OECD 1984 which gives both options.
- 8 Test according to OECD 201. Limit test. Previously assigned Ri3 because endpoint was based on nominal. However, additional information shows that measured concentrations were 100-102% of nominal, endpoint based on nominal concentrations.
- 8 Test according to OECD 201. Limit test. Previously assigned Ri3 because endpoint was based on nominal. However, additional information shows that measured concentrations were 100-102% of nominal, endpoint based on nominal concentrations.
- 9 Test according to OECD 201. Concentrations not measured, test performed under light.
- 10 Test according to OECD 201. Concentrations not measured, test performed under light. Refers to same test as above.
- 11 Concentrations not measured, not clear if performed under darkness. No details on test water and conditions. Endpoint refers to both ratio of electron transport system activity and respiration.
- 12 Concentrations not measured, not clear if performed under darkness. No details on test water and conditions.
- 13 Concentration in dosing solution 97.5%, recovery in concurrent chronic tests was 91.9% on average
- Mean measured concentration 88% of nominal (range 76-105%), endpoint based on measured concentrations. Concurrent study indicated little degradation over 8 d. Test conditions taken from Deardorff and Stark, 2009.
- Daily renewal of test solutions, but concentrations not measured and performed under 16:8 h L:D as recommended in OECD 202
- 16 Concentrations not measured, test performed under 16:8 h L:D.
- 17 Concentrations not measured, but performed under darkness. Most sensitive endpoint for this species.
- 18 Concentrations not measured, but performed under darkness.
- 19 Concentrations not measured, test performed under light, Solvent control included.
- 20 Concentrations not measured, test performed under light. Temperature too high.
- Test according to OECD 202. Endpoint based on mean measured concentrations.
- Test according to OECD 202. Precipitation at two highest concentrations (56 and 100 mg/L), these were not included in EC50 estimation.
- 23 Concentrations not measured, but test performed in the dark. No details on test water. No details on test compound. Test performed with Daphtoxkit.
- Test according to OECD 202, no further details on test water and conditions. Concentrations not measured, not clear if performed under darkness.
- No details on test water and conditions. Concentrations not measured, not clear if performed under darkness. Feeding activity determined from algal growth.

- Test according to ISO. Stablity of test concentrations in distilled water checked for 21 d at 21°C, room light. At 70 mg/L and lower stable for 21 d, at 105 and 140 mg/L stable for 17 d, thereafter decline to 84 and 76% of nominal, respectively.
- Test according to ISO. Stablity of test concentrations in distilled water checked for 21 d at 21°C, room light. At 70 mg/L and lower stable for 21 d, at 105 and 140 mg/L stable for 17 d, thereafter decline to 84 and 76% of nominal, respectively. Formulation is more toxic than active substance, preference is given to test with active.
- 28 Daily renewal of test solutions, but concentrations not measured; performed under 16:8 h L:D as recommended in OECD 202
- Measured concentrations <10 mg/L within 6.3% of nominal, maximum deviation at >10 mg/L was 26.4%; endpoints reported as nominal; NOEC taken from table S3 in supporting info; endpoint reliable, but in view of exposure duration not relevant for MAC- and/or AA-EOS
- Reduced feeding; measured concentrations <10 mg/L within 6.3% of nominal, maximum deviation at >10 mg/L was 26.4%; endpoints reported as nominal; NOEC taken from table 3; endpoint reliable, but in view of exposure duration not relevant for MAC- and/or AA-EQS
- Measured concentrations <10 mg/L within 6.3% of nominal, maximum deviation at >10 mg/L was 26.4%; endpoints reported as nominal; EC50 estimated using data from table S3 in supporting info, using non-linear fit of log-logistic concentrations respons model in Graphpad Prism, bottom fixed to 0; endpoint reliable, but in view of exposure duration not relevant for MAC- and/or AA-EOS
- Measured concentrations <10 mg/L within 6.3% of nominal, maximum deviation at >10 mg/L was 26.4%; endpoints reported as nominal; test reliable, but consequence of endpoint for population effects not clear
- 33 Measured concentrations <10 mg/L within 6.3% of nominal, maximum deviation at >10 mg/L was 26.4%; endpoints reported as nominal
- 34 Acclimation 5 d. Animals fed during test. 12h:12h light; dark. Endpoint based on mean measured concentrations. Hardness calculated from information in Naylor et al., 1989.
- 35 Concentrations not measured, test performed under 10:14 h L:D
- 36 Concentration in dosing solution 97.5%, recovery in concurrent chronic tests was 91.9% on average; control mortality 33%, result considered as indicative by authors
- Exp 1 in paper. Feeding with conditioned alder leaf discs; measured concentrations differed <1% from nominal, result expressed as nominal; EC50 obtained from author upon request, fits with reported difference of factor 9.2 with exp 3 and checked with digitised graph
- 38 Exp 1 in paper. Feeding with conditioned alder leaf discs; measured concentrations differed <1% from nominal, result expressed as nominal; EC10 obtained from author upon request
- Exp 2 in paper. No feeding; measured concentrations differed <1% from nominal, result expressed as nominal; EC50 obtained from author upon request, fits with reading from digitised graph
- 40 Exp 2 in paper. No feeding; measured concentrations differed <1% from nominal, result expressed as nominal; EC10 obtained from author upon request
- 41 Exp 3 in paper. Feeding with conditioned alder leaf discs; test medium: filtered stream water from control stream mesocosms; measured concentrations differed <1% from nominal, result expressed as nominal
- 42 Exp 3 in paper. Feeding with conditioned alder leaf discs; test medium: filtered stream water from control stream mesocosms; measured concentrations differed <1% from nominal, result expressed as nominal; EC10 obtained from author; EC10 >2 times lower than lowest test concentration, reason for Ri 3
- 43 Exp 4 in paper. Feeding with conditioned alder leaf discs; test medium: filtered stream water from control stream mesocosms; measured concentrations differed <1% from nominal, result expressed as nominal
- Exp 5 in paper. Feeding with conditioned alder leaf discs; test medium: filtered stream water from control stream mesocosms; measured concentrations differed <1% from nominal, result expressed as nominal; EC50 obtained from author upon request, fits with reading from digitised graph
- Exp 5 in paper. Feeding with conditioned alder leaf discs; test medium: filtered stream water from control stream mesocosms; measured concentrations differed <1% from nominal, result expressed as nominal; EC10 obtained from author upon request; EC10 marginally lower than lowest test concentration/2, value considered acceptable
- Exp 6 in paper. No feeding; test medium: filtered stream water from control stream mesocosms; measured concentrations differed <1% from nominal, result expressed as nominal; EC50 obtained from author upon request, fits with reading from digitised graph
- 47 Exp 6 in paper. No feeding; test medium: filtered stream water from control stream mesocosms; measured concentrations differed <1% from nominal, result expressed as nominal; EC10 obtained from author upon request; EC10 factor of 6 lower than lowest test concentration, reason for Ri 3
- 48 Exposure in carrousel drift meter; stream velocity 0.2 m/s at top, <<0.1 m/s at bottom; 16:8 L:D, concentrations not measured; no passive drift observed
- DAR only reports endpoints, but summary available in Anatra-Cordone and Durkin, 2005. Endpoint based on measured concentrations. Original study also cited in Stoughton et al., 2008
- 50 DAR only reports endpoints, but summary available in Anatra-Cordone and Durkin, 2005.
- Mean measured concentration 64-99% of nominal, results based on mean measured concentrations. Rinsed cheesecloth present. Animals fed during test. Not fully clear if performed under renewal or static conditions, renewal assumed from description of sampling. NOEC is close to LC50 (54.24 μg/L), and LOEC is far above LC50 (243.68 μg/L), this indicates large variation between replicates. No figure available to check concentration response pattern, LC50 not considered reliable.
- Mean measured concentration 66-96% of nominal, results based on mean measured concentrations. Rinsed cheesecloth present. Animals fed during test. Not fully clear if performed under renewal or static conditions, renewal assumed from description of sampling. NOEC and LOEC much higher than LC50 (48.75 and 263.12 μg/L). This indicates large variation between replicates. No figure available to check concentration response pattern, LC50 not considered reliable.

- Pulse exposure followed by observation in clean water for 10 d. Mean measured concentration 115-119% of nominal, results based on mean measured concentrations. Not fully clear if performed under renewal or static conditions, renewal assumed from description of sampling. Nitex screen present. Animals fed during test. NOEC reported as 11.93 μg/L, but since LOEC is reported as >11.93 μg/L.
- Pulse exposure followed by observation in clean water for 10 d. Mean measured concentration 115-119% of nominal, results based on mean measured concentrations. Not fully clear if performed under renewal or static conditions, renewal assumed from description of sampling. Nitex screen present. Animals fed during test.
- Pulse exposure followed by observation in clean water for 10 d. Mean measured concentration 115-119% of nominal, results based on mean measured concentrations. Not fully clear if performed under renewal or static conditions, renewal assumed from description of sampling. Nitex screen present. Animals fed during test. Number of test concentrations (3) too low for reliable estimate of EC50.
- Pulse exposure followed by observation in clean water for 28 d. Mean measured concentration 115-119% of nominal, results based on mean measured concentrations. Not fully clear if performed under renewal or static conditions, renewal assumed from description of sampling. Nitex screen present. Animals fed during test. Number of test concentrations (3) too low for reliable estimate of LC50.
- Pulse exposure followed by observation in clean water for 28 d. Mean measured concentration 115-119% of nominal, results based on mean measured concentrations. Not fully clear if performed under renewal or static conditions, renewal assumed from description of sampling. Nitex screen present. Animals fed during test.
- Pulse exposure followed by observation in clean water for 28 d. Mean measured concentration 115-119% of nominal, results based on mean measured concentrations. Not fully clear if performed under renewal or static conditions, renewal assumed from description of sampling. Nitex screen present. Animals fed during test. NOEC reported as 11.93 μg/L, but since LOEC is reported as >11.93 μg/L.
- 59 Concentrations not measured, test performed under light.
- 60 Concentrations not measured. No information on test water and conditions.
- 61 Concentrations not measured, performed under light (1818 lux)
- Concentrations not measured, performed under ambient light
- 13 Concentration in dosing solution 97.5%, recovery in concurrent chronic tests was 91.9% on average
- 63 Concentrations not measured. Acetone used as solvent, max. 0.1% (v/v). Animals not fed. Test performed under continuous fluorescent light. EC50 read from graph.
- Concentrations not measured. Acetone used as solvent, max. 0.1% (v/v). Glass beads added to test vessel. Animals not fed. Test performed under continuous fluorescent light. EC50 read from graph.
- 65 Concentrations not measured. Acetone used as solvent, max. 0.1% (v/v). Glass beads added to test vessel. Animals not fed. Test performed under continuous fluorescent light
- Test performed in dechlorinated groundwater with 0.5 cm washed silicasand; 16:8 h L:D; analysis of low and high exposure concentration, values in between calculated from regression
- 67 Endpoint based on nominal concentrations, taking into account measured concentration in stock. Hardness calculated from information in Naylor et al., 1989. Assumed that reported "laboratory conditions" (20 °C, 16:8 h L:D) also refer to conditions of the test.
- 68 Endpoint based on nominal concentrations. LOEC given as 0.4 μg/L in table (NOEC < 0.4 μg/L), as 1.2 μg/L in text (NOEC 0.4 μg/L). Figure indocates that NOEC is most likely < 0.4 μg/L. Hardness calculated from information in Naylor et al., 1989. Assumed that reported "laboratory conditions" (20 °C, 16:8 h L:D) also refer to conditions of the test.
- Measured concentrations are reported as 0.39, 0.74 and 2.15 µg/L (78, 49 and 48% of nominal) at the end of the constant exposure test. Not clear which time period is meant, probably the end of the 10-days exposure period in which half of the test solutions was renewed every 48 h. Exposure over the actual test period not known. Acid-washed inorganic fine sediment present. 43% reduction in growth as compared to control at next higher concentration.
- Measured concentrations are reported as 0.39, 0.74 and 2.15 μg/L (78, 49 and 48% of nominal) at the end of the constant exposure test. Not clear which time period is meant, probably the end of the 10-days exposure period in which half of the test solutions was renewed every 48 h. Exposure over the actual test period not known. Acid-washed inorganic fine sediment present. ca. 15% reduction in activity as compared to control at next higher concentration.
- Pulse exposure for 96 h, followed by observation in clean water for 6 d. Measured concentrations are reported as 0.39, 0.74 and 2.15 µg/L (78, 49 and 48% of nominal) at the end of the constant exposure test. Not clear which time period is meant, probably the end of the 10-days exposure period in which half of the test solutions was renewed every 48 h. Exposure over the actual test period not known. Acid-washed inorganic fine sediment present.
- 72 Range finding experiment for chronic study. Endpoint most likely based on nominal concentrations.
- 73 Test system equivalent to OECD 202. Measured initial concentrations 95.6-102 % of nominal, concentrations at end not measured. Probably performed under light.
- Pulse exposure for 96 h, followed by observation in clean water for 48 h; half of the test solutions was renewed after 48 h; measured concentrations are reported as 0.30, 0.55 and 1.20 µg/L (40, 63 and 60% of nominal) at the end of the exposure period; endpoint reported on the basis of measured concentration; no data on initial concentrations and not clear if measured concentrations refer to 48 or 96 h; exposure over the actual test period not known; acid-washed inorganic fine sediment present.
- 75 Exposure in carrousel drift meter; stream velocity 0.2 m/s at top, <<0.1 m/s at bottom; 16:8 L:D, concentrations not measured; organisms active after 12 h, almost immobile after 26 h
- 76 DAR reports only 10-d endpoints from this study, 96-h values cited by Anatra-Cordone and Durkin, 2005. Endpoint based on measured concentrations.

- Mean measured concentration 78-103% of nominal, results based on mean measured concentrations. Silica sand present. Animals fed during test. Not fully clear if performed under renewal or static conditions, renewal assumed from description of sampling. NOEC is close to LC50 (5.11 μg/L), and LOEC is far above LC50 (23.59 μg/L), this indicates large variation between replicates. No figure available to check concentration response pattern, LC50 not considered reliable.
- Mean measured concentration 78-103% of nominal, results based on mean measured concentrations. Silica sand present. Animals fed during test. Number of test concentrations (4) low, but considered acceptable for LC50 calculation. Not fully clear if performed under renewal or static conditions, renewal assumed from description of sampling.
- Pulse exposure for 96 h, followed by observation in clean water for 10 d. Mean measured concentration 113-123% of nominal, results based on mean measured concentrations. Not fully clear if performed under renewal or static conditions, renewal assumed from description of sampling. Silica sand present. Animals fed during test. Survival measured as emergence. No significant difference at highest concentration according to figure. NOEC reported as 3.47 μg/L, but since LOEC is reported as >3.47 μg/L.
- 80 Concentrations not measured, performed under light (1167 lux)
- Test performed according to WHO protocol. Plastic cups. Acetone control included. Concentrations not measured, not clear if performed in the dark. Experiment to investigate efficacy of different imidacloprid analogues, only pure imidacloprid is reported here.
- 82 Concentrations not measured, performed under light (3090 lux)
- 83 Concentrations not measured, performed under light (2300 lux)
- 84 Test performed in dechlorinated groundwater. Average of three tests. Result based on nominal, actual concentrations 90-120% of nominal.
- 85 Test performed in dechlorinated groundwater. Result based on nominal, actual concentrations 90-120% of nominal.
- 86 Test performed in dechlorinated groundwater. Result based on nominal, actual concentrations 90-120% of nominal.
- 87 Test performed in dechlorinated groundwater. Result based on nominal, actual concentrations 90-120% of nominal. NOEC refers to effect on feeding rate during 24-h exposure period.
- Test performed in dechlorinated groundwater. Result based on nominal, actual concentrations 90-120% of nominal. NOEC refers to effect on feeding rate over 4 d recovery period after exposure for 24 h. No consistent pattern, NOECs were 0.5, <0.1, <0.1 and 0.1 µg/L on the consecutive recovery days.
- 89 Concentrations not measured, performed under light (1153 lux)
- 90 Concentrations not measured, performed under light 3200 lux), 3 individuals appeared to be H. saxonica
- 91 Concentrations not measured, performed under light (1748 lux)
- 92 Concentration in dosing solution 97.5%, recovery in concurrent chronic tests was 91.9% on average; control mortality 20%, result considered as indicative by authors
- In-situ bioassay at outflow of outdoor stream-mesocosms that received three 24-h pulses of 2 or 20 μg/L imidacloprid at 7-d time interval. Average peak concentrations during the pulses were 1.63 and 17.60 μg/L (81 and 88% of nominal). Significant inhibition by 71% at 17.6 μg/L, 27% inhibition at 1.63 μg/L. test reliable, but consequence of endpoint for population effects not clear
- Oxygen consumption measured during last 4 h of 24 h exposure period. Concentrations not measured, but test performed under darkness and same stocks used as for mesocosm experiment in which concentrations were >80% of nominal. Most likely performed in groundwater; test reliable, but consequence of endpoint for population effects not clear
- 95 Endpoint based on nominal concentrations, taking into account measured concentration in stock. Hardness calculated from information in Naylor et al., 1989. Assumed that reported "laboratory conditions" (20 °C, 14:10 h L:D) also refer to conditions of the test. Animals acclimated for 14 d.
- 96 Endpoint based on nominal concentrations. Not clear if performed under darkness. Hardness calculated from information in Naylor et al., 1989. Assumed that reported "laboratory conditions" (20 °C. 14:10 h L:D) also refer to conditions of the test. Animals acclimated for 14 d.
- 97 Partial renewal (100 out of 150 mL) every 48 h. Endpoint reported as LOEC 7.8 μg/L nominal, NOEC is thus 3.9 μg/L nominal. Based on measured concentration in old solutions (66-63% of nominal), actual NOEC recalculated as 2.5 μg/L. Inorganic fine sediment present. Hardness calculated from information in Naylor et al., 1989. Test performed under 14:10 h L:D. Animals acclimated for 14 d. Endpoint measured as number of animals visible on sediment or in water. test reliable, but consequence of endpoint for population effects not clear
- 98 Endpoint based on average of measured concentrations at start and end; test performed under 16:8 h L:D; acetone control at level of highest amount added
- 99 Endpoint based on average of measured concentrations at start and end. Test performed under 16:8 h L:D.
- 100 Concentrations not measured, not clear whether performed under darkness.
- Test in stream water. Initial concentrations 94-100% of nominal, concentrations remained stable during experiment. Stablity of test concentrations in distilled water checked for 21 d at 21°C, room light. At 70 mg/L and lower stable for 21 d, at 105 and 140 mg/L stable for 17 d, thereafter decline to 84 and 76% of nominal, respectively.
- Test according to OECD guidelines. Previously assigned Ri3 because endpoint was based on nominal. However, additional information shows that measured concentrations were >85% of nominal, except for highest concentration (1000 mg/L, 54 % recovery). Acceptable recovery at next two lower concentrations where already 100% mortality was observed, endpoint based on nominal.
- Test according to FIFRA guidelines. DMF 0.1 mL/L, solvent control included. Endpoint based on mean measured concentrations (86-94% of nominal). Previously assigned Ri2, but surface film and precipitate were (partly transiently) noted in the 42, 64 and 105 mg/L test solutions.
- Test according to OECD 203. Previously assigned Ri3 because endpoint was based on nominal. However, additional information shows that measured concentrations were >80% of nominal. Endpoint based on nominal.

- Test according to FIFRA guidelines. DMF 0.1 mL/L, solvent control included. Endpoint based on mean measured concentrations (75-101% of nominal). Previously assigned Ri2, but surface film and precipitate were (partly transiently) noted in the 42, 64 and 83 mg/L test solutions.
- Test performed in dechlorinated groundwater. Result based on nominal, actual concentrations <LOD at 0.1 μg/L, 38 and 69% of nominal at 0.5 and 1.0 μg/L, and 94-100% at 5.0-240 μg/L. Acceptable recovery at level of EC50.
- Test performed with sediment slurry (16% OM) contaminated with imidaloprid solutions in dechlorinated groundwater. Result based on nominal, actual concentrations of solutions <LOD at 0.1 μg/L, 38 and 69% of nominal at 0.5 and 1.0 μg/L, and 94-100% at 5.0-240 μg/L. Actual concentration in overlying water during test not known. NOEC refers to effect on egestion rate during 24-h exposure period.
- Test performed with sediment slurry (16% OM) contaminated with imidaloprid solutions in dechlorinated groundwater. Result based on nominal, actual concentrations of solutions <LOD at 0.1 µg/L, 38 and 69% of nominal at 0.5 and 1.0 µg/L, and 94-100% at 5.0-240 µg/L. Actual concentration in overlying water during test not known. NOEC refers to effect on egestion rate over 4 d recovery period after exposure for 24 h. NOECs tend to increase over time, and were 0.1, 0.5, 1 and 1 µg/L on the consecutive recovery days.
- Hardness calculated from given Ca and Mg concentrations. Concentrations not measured, test performed under 12:12 h L:D. No aeration. Locomotion recorded automatically every 10 min for 4 min. Regression coefficient of concentration-response relationship is low (0.49)

Scenedesmus subspicatus N S imidacloprid tg 8.2-9.1 23 72 h NOEC biomass 10000 3 5 19,6	-
Cyanobacteria Cyanobacteri	₽T.
Cyanobacteria	
Anabena flos-aquae	
Algae	
Desmodesmus subspicatus Y S midacloprid ag 21 72 h EC10 growth rate 106000 2 2 [20]	.7]
Desmodesmus subspicatus	
Pseudokirchneriella subcapitata N S imidacloprid 98.6 72 h NOEC growth rate < 100000 2 4 191	
Pseudokirchneriella subcapitata N S imidacloprid 98.6	
Scenedesmus subspicatus	
Scenedesmus subspicatus N S imidacloprid tg S.2-9.1 23 72 h NOEC biomass 10000 3 5 19,6	
Scenedesmus subspicatus	.9,62]
Diatomea	.9,62]
Navicula pelliculosa	8]
Crustacea Asellus aquaticus field collected Y R SL product 200 g/L rw 7.4-8.3 17.7-19.7 28 d EC10 immobility 1.35 3 8 [5] Asellus aquaticus field collected Y R SL product 200 g/L rw 7.4-8.3 17.7-19.7 28 d EC10 immobility 1.35 3 8 [5] Asellus aquaticus field collected Y R SL product 200 g/L rw 7.4-8.3 17.7-19.7 28 d EC10 mortality 1.71 3 9 [5] Ceriodaphnia dubia < 24 h	
Asellus aquaticus field collected Y R SL product 200 g/L rw 7.4-8.3 17.7-19.7 28 d EC10 immobility 1.35 3 8 [5] Asellus aquaticus field collected Y R SL product 200 g/L rw 7.4-8.3 17.7-19.7 28 d LC10 mortality 1.71 3 9 [5] Ceriodaphnia dubia < 24 h	.7]
Asellus aquaticus field collected Y R SL product 200 g/L rw 7.4-8.3 17.7-19.7 28 d LC10 mortality 1.71 3 9 [5] Ceriodaphnia dubia < 24 h	
Ceriodaphnia dubia < 24 h Y S Admire Pro 42.8% dw 80-100 25 8 d EC10 population growth rate 0.3 3 10 [36] Ceriodaphnia dubia < 24 h	
Ceriodaphnia dubia < 24 h Y S Admire Pro 42.8% dw 80-100 25 8 d EC15 survival founders 0.3 3 11 [36] Ceriodaphnia dubia < 24 h	
Ceriodaphnia dubia < 24 h Y S Admire Pro 42.8% dw 80-100 25 8 d EC14 offspring/female 0.3 3 12 [36] Ceriodaphnia dubia < 24 h	
Ceriodaphnia dubia < 24 h Y S Admire Pro 42.8% dw 80-100 25 8 d EC27 nr. of indiviuals 0.3 3 13 [36] Daphnia magna < 24 h	
Daphnia magna $ \cdot \cdot $ S imidacloprid $ \cdot $ 95.4 $ \cdot $ 140-164 7.7-8.3 20 21 d NOEC adult length $ \cdot $ 1800 2 14 [19,60] Daphnia magna $ \cdot $ 24 h Y R imidacloprid $ \cdot $ 99% am 21 21 d NOEC neonates per adult 1250 2 15 [34] Daphnia magna $ \cdot $ 24 h Y R Confidor 200 g/L am 21 21 d NOEC neonates per adult 2500 2 15 [34] Daphnia magna $ \cdot $ 24 h Y R imidacloprid $ \cdot $ 99% am 21 21 d NOEC brood size, time to 1st 2500 2 15 [34] Daphnia magna $ \cdot $ 24 h Y R Confidor 200 g/L am 21 21 d NOEC brood size, time to 1st 2500 2 15 [34] Daphnia magna $ \cdot $ 24 h Y R Confidor 200 g/L am 21 21 d NOEC brood size, time to 1st 2500 2 15 [34]	
Daphnia magna	
Daphnia magna $<$ 24 h Y R Confidor 200 g/L am 21 21 d NOEC neonates per adult 2500 2 15 34 Daphnia magna $<$ 24 h Y R imidacloprid \geq 99% am 21 21 d NOEC brood size, time to 1st 2500 2 15 34 Daphnia magna $<$ 24 h Y R Confidor 200 g/L am 21 21 d NOEC brood size, time to 1st 2500 2 2 2 2 2 2 2 2 2 2	
Daphnia magna $< 24 \text{ h}$ Y R imidacloprid $\geq 99\%$ am $= 21$ $= 21 \text{ d}$ NOEC brood size, time to 1st $= 2500$ $= 215$ $= 216$ Daphnia magna $= 24 \text{ h}$ Y R Confidor $= 200 \text{ g/L}$ am $= 21$ $= 21 \text{ d}$ NOEC brood size, time to 1st $= 2500$ $= 215$ $= 216$ Daphnia magna $= 216$ D	
Daphnia magna	
Daphnia magna < 24 h Y R Confidor 200 g/L am 21 21 d NOEC brood size, time to 1st brood 2500 2 15 [34]	4]
brood	141
	4]
Daphnia magna	41
Daphnia magna < 24 h Y R Confidor 200 g/L am 21 21 d NOEC broods per adult 5000 2 15 [34]	
Daphnia magna $ 24 \text{ h} $ Y R imidacloprid $ 299\% $ am $ 21 $	
Daphnia magna	
Daphnia magna 24 h Y R imidacloprid 20 21 d NOEC reproduction 2000 2 16 [77]	
Daphnia magna < 24 h Y R imidacloprid 20 21 d EC50 reproduction 5500 2 17 [77]	
Daphnia magna < 24 h Y R imidacloprid 20 21 d NOEC growth 4000 2 17 [77]	
Daphnia magna	
Gammarus pulex different ages N S imidacloprid tg 28 d NOEC swimming behaviour 64 3 18 [19]	
Gammarus pulex different ages N S imidacloprid tg 28 d NOEC mortality 128 3 18 [19]	
Gammarus pulex field collected N S SL product 200 g/L rw 7.4-8.3 17.7-19.7 28 d EC10 immobility 2.95 2 19 [5]	
Gammarus pulex field collected N S SL product 200 g/L rw 7.4-8.3 17.7-19.7 28 d LC10 mortality 5.77 2 19 [5]	ว์
Gammarus pulex field collected Y R imidacloprid/14C- 99.9% am 7 13 14-21 d NOEC feeding rate < 15 3 20 [78]	
imidacloprid imidacloprid	-
Gammarus pulex field collected Y R imidacloprid/ 99.9% am 7 13 14-21 d NOEC mortality < 15 3 20 [78]	8]
¹⁴ C-imidacloprid	
Hyalella azteca juveniles, 2-9 d Y R Admire 240 g/L ftw 133 8.2 24 10 d LC50 mortality 7.05 2 21 [35]	
Hyalella azteca juveniles, 2-9 d Y R Admire 240 g/L ftw 133 8.2 24 10 d NOEC mortality 3.53 2 22 [35]	
Hyalella azteca juveniles, 2-9 d Y R Admire 240 g/L ftw 133 8.2 24 10 d LC10 mortality 1.67 2 23 [35]	.5]

Species	Species	А	Test	Test .	Purity	Test	Hardness	рН	Т	Ехр.	Crit.	Test	Value	Ri Note	Ref.
	properties		type	compound	F0/ 7	water	CaCO ₃		[0.6]	time		endpoint	F /1.7		
					[%]	6	[mg/L]	0.0	[°C]	40.1	FOFO	.,	[µg/L]	2 24	5051
Hyalella azteca	juveniles, 2-9 d	Y	R	Admire	240 g/L		133	8.2	24	10 d	EC50	growth	10.31	2 24	[35]
Hyalella azteca	juveniles, 2-9 d	Y	R	Admire	240 g/L		133	8.2	24	10 d	EC10	growth	10.7	2 25	[35]
Hyalella azteca	juveniles, 2-9 d	Y	R	Admire	240 g/L		133	8.2	24	10 d	NOEC	growth	≥ 11.95	3 26	[35]
Hyalella azteca	juveniles, 2-9 d	Y	R	Admire	240 g/L			8.2	24	28 d	LC50	mortality	6.98	2 27	[35]
Hyalella azteca	juveniles, 2-9 d	Y	R	Admire	240 g/L	_	133	8.2	24	28 d	LC10	mortality	0.47	2 28	[35]
Hyalella azteca	juveniles, 2-9 d	Y	R	Admire	240 g/L			8.2	24	28 d	NOEC	mortality	3.44	2 29	[35]
Hyalella azteca	juveniles, 2-9 d	Υ	R	Admire	240 g/L	ftw	133	8.2	24	28 d	NOEC	growth	≥ 11.46	2 30	[35]
Insecta	6.11.11.1	.,	-	61 1 1	200 (1			7.4.0.0	177107	20.1	E010		0.004	2 24	
Caenis horaria	field collected	Y	R	SL product	200 g/L				17.7-19.7		EC10	immobility	0.024	2 31	[5]
Caenis horaria	field collected	Υ	R	SL product	200 g/L				17.7-19.7		LC10	mortality	0.235	2 32	[5]
Chaoborus obscuripes	field collected	Υ	R	SL product	200 g/L				17.7-19.7		LC10	mortality	1.99	2 33	[5]
Chaoborus obscuripes	field collected	Υ	R	SL product	200 g/L	rw		7.4-8.3	17.7-19.7		EC10	immobility	4.57	2 33	[5]
Chironomus riparius	larvae, <2-3 d old, 1st instar	N	S	Confidor SL 200	194 g/L					28 d	EC10	emergence	2.56	3 34	[19]
Chironomus riparius	larvae, <2-3 d old, 1st instar	N	S	imidacloprid	98.4					28 d	EC10	emergence	2.09	3 35	[19]
Chironomus riparius	larvae, <2-3 d old, 1st instar	N	S	imidacloprid	98.4					28 d	EC10	emergence	0.87	2 36	[15]
Chironomus riparius	larvae, <2-3 d old, 1st instar	N	S	Imidacloprid OD 200	196 g/L					28 d	NOEC	emergence	3.2	3 37	[79]
Chironomus riparius	larvae, 4 d, 2nd instar	Υ	R	Confidor	200 g/L	rw				10 d	NOEC	growth	0.74	3 38	[71]
Chironomus riparius	larvae, 4 d, 2nd instar	Υ	R	Confidor	200 g/L	rw				10 d	NOEC	locomotion, ventilation	0.74	3 39	[71]
Chironomus riparius	larvae, 3 d, 1st instar	Υ	R	Confidor	200 g/L	am			20	10 d	NOEC	growth	0.4	2 40	[37]
Chironomus riparius	larvae, 3 d, 1st instar	Υ	R	Confidor	200 g/L	am			20	10 d	NOEC	emergence ratio	0.4	2 40	[37]
Chironomus riparius	larvae, 3 d	Υ	R	Confidor	200 g/L	am			20	10 d	NOEC	development rate	< 0.4	2 40	[37]
Chironomus riparius	larvae, 3 d	Υ	R	Confidor	200 g/L	am			20	6 d	NOEC	burrowing activity	0.768	2 41	[37]
Chironomus tentans	2nd instar	Υ	R	imidacloprid	95					10 d	LC50	mortality	3.17	2 42	[27]
Chironomus tentans	2nd instar	Υ	R	imidacloprid	95					10 d	NOEC	growth	0.67	2 43	[27]
Chironomus tentans	larvae, 7 d	Υ	R	Admire	240 g/L	ftw	140	8.2	24	10 d	NOEC	mortality	≥ 3.57	2 44	[35]
Chironomus tentans	larvae, 7 d	Υ	R	Admire	240 g/L	ftw	140	8.2	24	10 d	LC10	mortality	1.33	2 45	[35]
Chironomus tentans	larvae, 7 d	Υ	R	Admire	240 g/L		140	8.2	24	10 d	EC50	growth	3.14	2 46	[35]
Chironomus tentans	larvae, 7 d	Υ	R	Admire	240 g/L	ftw	140	8.2	24	10 d	EC10	growth	1.64	2 47	[35]
Chironomus tentans	larvae, 7 d	Υ	R	Admire	240 g/L		140	8.2	24	10 d	NOEC	growth	1.17	2 48	[35]
Chironomus tentans	larvae, 7 d	Υ	R	Admire	240 g/L	ftw	140	8.2	24	28 d	LC50	mortality	0.91	2 49	[35]
Chironomus tentans	larvae, 7 d	Υ	R	Admire	240 g/L	ftw	140	8.2	24	28 d	NOEC	mortality	1.14	3 50	[35]
Chironomus tentans	larvae, 7 d	Υ	R	Admire	240 g/L		140	8.2	24	28 d	LC10	mortality	0.42	2 51	[35]
Chironomus tentans	larvae, 7 d	Υ	R	Admire	240 g/L	ftw	140	8.2	24	28 d	NOEC	growth	1.14	2 52	[35]
Cloeon dipterum	field collected	Υ	R	SL product	200 g/L			7.4-8.3	17.7-19.7	28 d	EC10	immobility	0.033	2 53	[5]
Cloeon dipterum	field collected	Υ	R	SL product	200 g/L	rw		7.4-8.3	17.7-19.7	28 d	LC10	mortality	0.041	2 53	[5]
Copera annulata	larvae, head width 1.92 mm			Avermectin/ Imidacloprid	1.8% EC	tw	30			15 d	NOEC	mortality	≥ 0.00018		[80]
Plea minutissima	field collected	Υ	R	SL product	200 g/L	rw		7 4-8 3	17.7-19.7	28 d	EC10	immobility	2.03	2 55	[5]
Plea minutissima	field collected	Y	R	SL product	200 g/L				17.7-19.7		LC10	mortality	4.35	2 55	[5]
Pteronarcys dorsata	field collected	Y	S	Confidor 200 SL	200 g/L			7.4 0.5	20 ± 3	14 d	LC10	mortality	15.8	2 56	[41]
Pteronarcys dorsata	field collected	V	S	Confidor 200 SL					20 ± 3	14 d	LC50	mortality	41	2 56	[41]
Pteronarcys dorsata	field collected	V	S	EcoPrid	50 g/L				20 ± 3	14 d	LC10	mortality	13.3	2 57	[40]

Species	Species	Α	Test	Test	Purity	Test	Hardness	рН	Т	Exp.	Crit.	Test	Value	Ri Note	Ref.
	properties		type	compound		water	CaCO ₃			time		endpoint			
					[%]		[mg/L]		[°C]				[µg/L]		
Sericostoma vittatum	larvae, field collected	Υ	R	Confidor	200 g/L	. am			20	6 d		mortality	≥ 5.0	2 58	[37]
Sericostoma vittatum	larvae, field collected	Υ	R	Confidor	200 g/L				20	6 d	NOEC	feeding rate	1.23	2 59	[37]
Sialis lutaria	field collected	Υ	R	SL product	200 g/L	. rw		7.4-8.3	17.7-19.7		EC10	immobility	1.28	2 60	[5]
Sialis lutaria	field collected	Υ	R	SL product	200 g/L	. rw		7.4-8.3	17.7-19.7	28 d	LC10	mortality	25.1	2 60	[5]
Tipula sp.	field collected	Υ	S	Confidor 200 SL	200 g/L	. nw			20 ± 3	14 d	LC10	mortality	34	2 61	[41]
Tipula sp.	field collected	Υ	S	Confidor 200 SL	200 g/L	. nw			20 ± 3	14 d	LC50	mortality	> 63	2 62	[41]
Tipula sp.	field collected	Υ	S	EcoPrid	50 g/L	nw			20 ± 3	14 d	LC10	mortality	50	3 63	[40]
Amphibia															
Rana pipiens	egg masses, 70-100 eggs										NOEC	hatching success	88000- 110000	4 64	[27]
Pseudacris triseriata	egg masses, 70-100 eggs										NOEC	deformities	17500- 20000	4 64	[27]
Ambystoma jeffersonianum	egg masses, 70-100 eggs										NOEC	hatching success	88000- 110000	4 64	[27]
Bufo americanus	egg masses, 70-100 eggs										NOEC	hatching success	88000- 110000	4 64	[27]
Pisces															
Danio rerio	fertilised eggs	N	Rc	imidacloprid		am	367		26	96 h	NOEC	development	≥ 50000	3 65	[81]
Danio rerio	fertilised eggs	N	Rc	imidacloprid		am	367		28	96 h	NOEC	development	≥ 30000	3 66	[81]
Danio rerio	fertilised eggs	N	Rc	imidacloprid		am	367		30	72 h	NOEC	development	≥ 25000	3 66	[81]
Danio rerio	fertilised eggs	N	Rc	imidacloprid		am	367		33.5	72 h	NOEC	development	≥ 25000	3 66	[81]
Danio rerio	fertilised eggs	Υ	S	imidacloprid	ag	am			26	48 h	NOEC	development	≥ 320000	2 67	[20]
Danio rerio	fertilised eggs	Υ	S	Confidor	200 g/L	am			26	48 h	LC10	mortality	300000	2 68	[20]
Oncorhynchus mykiss	length 7.2 cm, bw 3.9 g	Υ	R	imidacloprid			40-60	7.2-8.0	15	21 d	NOEC	length, weight	28500	3 69	[62]
Oncorhynchus mykiss	fertilised eggs	Υ	F	imidacloprid	98.2				9-12	91 d	NOEC	development	9020	2 70	[19]
Oncorhynchus mykiss	fertilized eggs, < 4 h	Υ	F	imidacloprid	tg					98 d	NOEC	growth	1200	2 71	[27]
Mollusca															
Marisa cornuarietis	fertilised eggs	N	S	imidacloprid		rtw			26	9 d	NOEC	heart rate	10000	3 72	[82]
Marisa cornuarietis	fertilised eggs	N	S	imidacloprid		rtw			26	9 d	NOEC	mortality	≥ 50000	3 73	[82]
Marisa cornuarietis	fertilised eggs	N	S	imidacloprid		rtw			26	9 d	NOEC	hatching	≥ 50000	3 73	[82]
Marisa cornuarietis	fertilised eggs	N	S	imidacloprid		rtw			26	9 d	NOEC	weight	≥ 50000	3 73	[82]

- 1 Based on mean measured concentrations. Study previously assigned Ri2, but information on test conditions and test parameter not available.
- Test probably performed according to ISO guideline. Stablity of test concentrations in distilled water checked for 21 d at 21°C, room light. At 70 mg/L and lower stable for 21 d, at 105 and 140 mg/L stable for 17 d, thereafter decline to 84 and 76% of nominal, respectively. Cells counted only at start and 72 h, initial cell density not reported.
- Test probably performed according to ISO guideline. Stablity of test concentrations in distilled water checked for 21 d at 21°C, room light. At 70 mg/L and lower stable for 21 d, at 105 and 140 mg/L stable for 17 d, thereafter decline to 84 and 76% of nominal, respectively. Toxicity of formulation is more than 3 times higher than that of active substance, preference is given to test with active. Solvent of formulation included in control tests. Cells counted only at start and 72 h, initial cell density not reported..
- 4 Test according to OECD 201. Limit test. Concentrations measured, recovery 100-102% of nominal, endpoint based on nominal concentrations.
- 5 Test according to OECD 201. Concentrations not measured, test performed under light.
- 6 Test according to OECD 201. Concentrations not measured, test performed under light. Refers to same test as above.
- 7 Based on mean measured concentrations. Study previously assigned Ri2, but information on test conditions and test parameter not available.
- 8 Concentration in dosing solution 95.5%, time weighted average concentration 95.3% of nominal, results expressed as nominal; control immobility too high (20%)
- 9 Concentration in dosing solution 95.5%, time weighted average concentration 95.3% of nominal, results expressed as nominal; control mortality too high (20%)

- 10 One concentration tested (0.3 μg/L), with 10% decrease as compared to control. Not possible to check concentration-effect relationship. Mean measured concentration identical to nominal. Concurrent study indicated little degradation over 8 d (measured concentrations between 83-106% of nominal).
- 11 One concentration tested (0.3 μg/L), with 15% decrease in survival as compared to control. No concentration-effect relationship established. Mean measured concentration identical to nominal. Concurrent study indicated little degradation over 8 d (measured concentrations between 83-106% of nominal).
- 12 One concentration tested (0.3 µg/L), with 14% decrease as compared to control. No concentration-effect relationship established. Mean measured concentration identical to nominal. Concurrent study indicated little degradation over 8 d (measured concentrations between 83-106% of nominal).
- 13 One concentration tested (0.3 μg/L), with 27% decrease as compared to control. No concentration-effect relationship established. Mean measured concentration identical to nominal. Concurrent study indicated little degradation over 8 d (measured concentrations between 83-106% of nominal).
- 14 Test according to OECD 202. DMF 01. mL/L, solvent control included. Endpoint based on mean measured concentrations.
- 15 Test conditions according to ISO 17025 (acute toxicity for D. magna). Renewal every 2 d. Stability between renewals confirmed, <20% deviation from nominal. Endpoint expressed as nominal concentration. Results presented as LOEC, next lower concentration taken as NOEC.
- 16 Test according to OECD 211. Measured concentrations in highest and lowest test concentration and stock within 5% of nominal. Endpoint expressed as nominal concentration. NOEC read from bar-graph in which significant differences from control are presented. Water quality parameters within accepted range.
- 17 Test according to OECD 211. Measured concentrations in highest and lowest test concentration and stock within 5% of nominal. Endpoint expressed as nominal concentration. Water quality parameters within accepted range.
- 18 Test according to OECD 219 (draft). Water/sediment system. Concentrations not measured, endpoints based on nominal initial concentrations.
- 19 Concentration in dosing solution 95.5%, time weighted average concentration 97% of nominal, results expressed as nominal
- 20 Feeding; renewal every 5 d; 12:12 h L:D, wavelength 380-730 nm; measured concentration constant at level of nominal, but analysis for total radioactivity only; not clear if increased wavelength has prevented degradation
- 21 Mean measured concentration 118-130% of nominal, results based on mean measured concentrations; results for first 10 d of 28-d test; number of test concentrations (4) low, but considered acceptable for LC50 calculation.
- Mean measured concentration 118-130% of nominal, results based on mean measured concentrations; results for first 10 d of 28-d test.
- 23 Endpoint recalculated using TechDig analysis of graph; LC50 estimated using TechDig is 7.1 μg/L, which is similar to author's value; mean measured concentration 118-130% of nominal, results based on mean measured concentrations; 122% recovery assumed for 0.3 μg/L nominal (not analysed); results for first 10 d of 28-d test; NOEC is higher than LC25, and LOEC higher than LC50, but concentration-response relationship present; number of test concentrations (4) low, but considered acceptable for LC10 calculation.
- 24 Mean measured concentration 118-130% of nominal, results based on mean measured concentrations; results for first 10 d of 28-d test; NOEC and LOEC are higher than EC50, but clear concentration-response relationship present; number of test concentrations (4) low, but considered acceptable for EC50 calculation.
- 25 Endpoint recalculated using TechDig analysis of graph; EC50 estimated using TechDig is 12.4 μg/L, which is slightly higher than author's value; mean measured concentration 118-130% of nominal, results based on mean measured concentrations; 122% recovery assumed for 0.3 μg/L nominal (not analysed); results for first 10 d of 28-d test; NOEC and LOEC are higher than EC50, but clear concentration-response relationship present; number of test concentrations (4) low, but considered acceptable for EC50 calculation.
- Mean measured concentration 118-130% of nominal, results based on mean measured concentrations. Results for first 10 d of 28-d test. NOEC reported as 11.95 μg/L, but since LOEC is reported as >11.95 μg/L, NOEC should read ≥ 11.95 μg/L. NOEC and LOEC are higher than EC50, probably reduced power because of variation between replicates and/or applied statistical test. Clear concentration-response relationship, preference is given to EC10.
- 27 Mean measured concentration 115-146% of nominal, results based on mean measured concentrations.
- 28 Endpoint recalculated using TechDig analysis of graph; mean measured concentration 115-146% of nominal, results based on mean measured concentrations; EC10 marginally lower than lowest test concentration/2, result considered acceptable.
- 29 Mean measured concentration 115-146% of nominal, results based on mean measured concentrations. LOEC is higher than LC50. Clear concentration-response relationship, preference is given to LC10.
- 30 Mean measured concentration 115-146% of nominal, results based on mean measured concentrations; no clear concentration-response relationship; NOEC reported as 11.46 μ g/L, but since LOEC is reported as >11.46 μ g/L, NOEC should read \geq 11.46 μ g/L.
- 31 Concentration in dosing solution 95.5%, time weighted average concentration 84.9% of nominal, results expressed as nominal; control immobility relatively high (17%), but lower than validity criterion of OECD 211 (chronic Daphnia)
- 32 Concentration in dosing solution 95.5%, time weighted average concentration 84.9% of nominal, results expressed as nominal
- 3 Concentration in dosing solution 95.5%, time weighted average concentration 91.7% of nominal, results expressed as nominal
- Test according to OECD 219 (draft); water/sediment system; endpoints based on nominal initial concentrations; endpoint previously reported as 0.0132 mg/L, but this value refers to the formulation; recalculated to active content, the NOEC is 2.56 µg/L; DAR gives EC15 of 2.7 µg/L as surrogate for NOEC.
- 35 Test according to OECD 219 (draft); water/sediment system; endpoints based on nominal initial concentrations
- 36 Test according to OECD 219 (draft); water/sediment system; endpoint 2.09 μg/L based on nominal initial concentrations in water/phase (see above) recalculated using geometric mean concentration in water phase on days 0, 7 and 28.
- 37 Test according to OECD 219 (draft); water/sediment system; endpoint based on nominal initial concentrations, actual concentrations in water declined from 100% at the start to 25-26% at the end.

- 38 Measured concentrations are reported as 0.39, 0.74 and 2.15 μg/L (78, 49 and 48% of nominal) at the end of the constant exposure test. Not clear which time period is meant, probably the end of the 10-days exposure period in which half of the test solutions was renewed every 48 h. Exposure over the actual test period not known. Acid-washed inorganic fine sediment present. 34% reduction in growth as compared to control at next higher concentration. Doubtful whether 10-d growth is to be considered as a true chronic endpoint when starting with 2nd instar larvae.
- 39 Measured concentrations are reported as 0.39, 0.74 and 2.15 μg/L (78, 49 and 48% of nominal) at the end of the constant exposure test. Not clear which time period is meant, probably the end of the 10-days exposure period in which half of the test solutions was renewed every 48 h. Exposure over the actual test period not known. Acid-washed inorganic fine sediment present. ca. 30% reduction in locomotion as compared to control at next higher concentration, and almost no ventilation.
- 40 Test according to OECD 219. Partial renewal (100 out of 150 mL) every 48 h. Inorganic fine sediment present. Endpoint based on nominal concentrations, measured concentration in old solutions 96% of nominal at level of NOEC. Test performed under 14:10 h L:D.
- 41 Test according to OECD 219. Partial renewal (100 out of 150 mL) every 48 h. Inorganic fine sediment present. Endpoint recalculated from nominal concentration in paper (LOEC 3.7 μg/L → NOEC 1.2 μg/L), using reported recovery in old solutions of 64% of nominal. Test performed under 14:10 h L:D.
- 42 DAR only reports endpoints, but summary available in Anatra-Cordone and Durkin, 2005. Original study also cited in Stoughton et al., 2008. Endpoint based on measured concentrations.
- 43 DAR only reports endpoints, but summary available in Anatra-Cordone and Durkin, 2005. Original study also cited in Stoughton et al., 2008. Endpoint based on measured concentrations. Doubtful whether 10-d growth is to be considered as a true chronic endpoint when starting with 2nd instar larvae.
- 44 Mean measured concentration 117-160% of nominal, results based on mean measured concentrations. Results for first 10 d of 28-d test. Survival includes emergence. NOEC reported as 3.57 μg/L, but since LOEC is reported as >3.57 μg/L, NOEC should read ≥ 3.57 μg/L.
- 45 Endpoint recalculated using TechDig analysis of graph. Mean measured concentration 117-160% of nominal, results based on mean measured concentrations. Results for first 10 d of 28-d test.

 Number of test concentrations (4) low, but considered acceptable for EC10 calculation.
- 46 Mean measured concentration 117-160% of nominal, results based on mean measured concentrations. Results for first 10 d of 28-d test. LOEC is higher than EC50, but clear concentration-response relationship present. Number of test concentrations (4) low, but considered acceptable for EC50 calculation. Doubtful whether 10-d growth is to be considered as a true chronic endpoint when starting with 7-d old larvae.
- 47 Endpoint recalculated using TechDig analysis of graph; mean measured concentration 117-160% of nominal, results based on mean measured concentrations; results for first 10 d of 28-d test; number of test concentrations (4) low, but considered acceptable for EC10 calculation; doubtful whether 10-d growth is to be considered as a true chronic endpoint when starting with 7-d old larvae.
- 48 Mean measured concentration 117-160% of nominal, results based on mean measured concentrations; results for first 10 d of 28-d test; clear concentration-response relationship, preference is given to EC10.
- Mean measured concentration 114-150% of nominal, results based on mean measured concentrations; survival measured as emergence; NOEC and LOEC are higher than LC50, but clear concentration-response relationship present; number of test concentrations (4) low, but considered acceptable for LC50 calculation.
- 50 Mean measured concentration 114-150% of nominal, results based on mean measured concentrations. Survival measured as emergence. 55% reduction at 1.14 μg/L, but not significant. LOEC and NOEC are higher than LC50, probably reduced power because of variation between replicates and/or applied statistical test. Clear concentration-response relationship, preference is given to LC10.
- 51 Endpoint recalculated using TechDig analysis of graph; mean measured concentration 114-150% of nominal, results based on mean measured concentrations; survival measured as emergence; number of test concentrations (4) low, but considered acceptable for LC10 calculation; LC10 marginally lower than lowest test concentration/2, result considered acceptable.
- 52 Mean measured concentration 114-150% of nominal, results based on mean measured concentrations. No significant difference at 1.14 µg/L, but full mortality at next higher concentration.
- 53 Concentration in dosing solution 95.5%, time weighted average concentration 86.4% of nominal, results expressed as nominal
- 54 Renewal after 10 d. Concentrations not measured. Mixture of avermectin and imidacloprid, content of individual compounds not given. Test concentrations presented as insecticide, not clear whether corrected for active content.
- 55 Concentration in dosing solution 95.5%, time weighted average concentration 92.4% of nominal, results expressed as nominal
- Results from microcosm experiment with stonefly and cranefly, organic material present, initial concentrations 96-108% of nominal, decline by 53-55% after 14 d, result recalculated based on geometric mean measured concentrations using mortality data from paper.
- 56 Results from microcosm experiment with stonefly and cranefly, organic material present, initial concentrations 96-108% of nominal, decline by 53-55% after 14 d, result recalculated based on geometric mean measured concentrations using mortality data from paper.
- 57 Results from microcosm experiment with stonefly and cranefly, organic material present, result recalculated based on twa measured concentrations using mortality data from paper.
- 58 Partial renewal (100 out of 150 mL) every 48 h. Inorganic fine sediment present. Mortality at all concentrations reported to be <10%, 20% at intermediate concentration 1.9 μg/L nominal, so NOEC is considered to be ≥ 7.8 μg/L nominal. Using reported recovery in old solutions of 66-63% of nominal, this is equal to >5.0 μg/L. Test performed under 14:10 h L:D.
- 59 Partial renewal (100 out of 150 mL) every 48 h. Inorganic fine sediment present. Endpoint recalculated from nominal concentration in paper (LOEC 3.9 μ g/L) wising reported recovery in old solutions of 66-63% of nominal. Test performed under 14:10 h L:D. Animals acclimated for 14 d. Feeding activity measured as weight loss of alder leaf discs. Feeding rate is not a parameter that is considered for risk limit derivation.
- 60 Concentration in dosing solution 95.5%, time weighted average concentration 95.3% of nominal, results expressed as nominal
- 60 Concentration in dosing solution 95.5%, time weighted average concentration 95.3% of nominal, results expressed as nominal
- 61 Results from microcosm experiment with stonefly and cranefly, organic material present, initial concentrations 96-108% of nominal, decline by 53-55% after 14 d, result recalculated based on geometric mean measured concentrations using mortality data from paper

- Results from microcosm experiment with stonefly and cranefly, organic material present, initial concentrations 96-108% of nominal, decline by 53-55% after 14 d, result recalculated based on geometric mean measured concentrations, <50% mortality at highest concentration
- 63 Results from microcosm experiment with stonefly and cranefly, organic material present, result recalculated based on twa measured concentrations using mortality data from paper, ambiguous fit
- 64 Not clear if based on measured concentrations, test duration and conditions not reported. Original study not available.
- 65 In view of life stage, test is considered as chronic. Purity of test compound not reported. Stock solutions kept in dark. Renewal every 48 h. Test performed under 12:12 h L:D, but concentrations not measured. No effects at highest concentration tested. Hardness recalculated from reported concentrations of Ca and Mg.
- 66 In view of life stage, test is considered as chronic. Purity of test compound not reported. Test performed under 12:12 h L:D, but concentrations not measured. Stock solutions kept in dark. Renewal every 48 h. No effects at highest concentration tested. Hardness recalculated from reported concentrations of Ca and Mg.
- 67 In view of life stage, test is considered as chronic. No effect on series of parameters tested. Stablity of test concentrations in distilled water checked for 21 d at 21°C, room light. At 70 mg/L and lower stable for 21 d, at 105 and 140 mg/L stable for 17 d, thereafter decline to 84 and 76% of nominal, respectively.
- 68 In view of life stage, test is considered as chronic. Endpoint is most sensitive parameter (heart beat) from series of developmental parameters tested. Test with solvents alone shows contribution of solvent to effect. Stablity of test concentrations in distilled water checked for 21 d at 21°C, room light. At 70 mg/L and lower stable for 21 d, at 105 and 140 mg/L stable for 17 d, thereafter decline to 84 and 76% of nominal, respectively.
- 69 Test according to OECD 204. Endpoint based on mean measured concentrations (95-105% of nominal), but precipitation and turbidity was noted at all test concentrations.
- 70 Test according to OECD 210. Previously assigned Ri3 because endpoint was based on nominal. However, additional information shows that endpoint is based on mean measured concentrations.
- 71 Endpoint based on mean measured concentrations. Most sensitive endpoint growth after 36 days.
- 72 Endpoint expressed as nominal concentration. Concentrations not measured, test performed under 12:12 L:D. Test water is tap water with added seasalt, up to conductivity of 820 μS/cm. Significant effect on heart rate.
- 73 Endpoint expressed as nominal concentration. Concentrations not measured, test performed under 12:12 L:D. Test water is tap water with added seasalt, up to conductivity of 820 µS/cm.

Table A1.3 Acute toxicity of imidacloprid for marine species

Species	Species	Α	Test	Test	Purity	Test	Hardness	рН	Т	Exp.	Crit.	Test	Value	Ri Note	Ref.
	properties		type	compound		water	CaCO ₃			time		endpoint			
					[%]		[mg/L]		[°C]				[µg/L]		
Bacteria															
Vibrio fischeri		N	S	Confidor			20	2		30 min	EC50	bioluminescence	226000	3 1	[57]
Vibrio fischeri		Υ	S	imidacloprid		am				15 min	EC50	bioluminescence	101000	3 2	[83]
Crustacea															
Artemia sp.	4th instar nauplii	N	S	imidacloprid	tg	am	38	8		48 h	LC50	mortality	361230	3 3	[84,85]
Artemia sp.	4th instar nauplii	N	S	imidacloprid	tg	am	9.5	8	27	48 h	LC50	mortality	> 300000	3 4	[84]
Americamysis bahia	< 24 h old	Υ	F	240 S	22.7%	nw	20	8.2-8.5	19.7-25.0	96 h	LC50	mortality	36	2 5	[27]
				Formulation											
Americamysis bahia	< 24 h old	Υ	F	imidacloprid	96.2%					96 h	LC50	mortality	37.7	2 6	[19,27]
Americamysis bahia	< 24 h old	Υ	F	imidacloprid	96.2%					96 h	LC50	mortality	34.1	2 7	[19,27]
Artemia parthenogenetica	2nd-3rd instar nauplii	N	S	imidacloprid		asw			28	24 h	LC50	mortality	1170	3 10	[86]
Palaemonetes pugio	larvae, 1-2 d, F1 from	N	R	imidacloprid	99.5%		20		25	96 h	LC50	mortality	309	3 8	[87]
	field collected animals											_			
Palaemonetes pugio	adult, field collected,	N	R	imidacloprid	99.5%		20		25	96 h	LC50	mortality	564	3 8	[87]
	acclimated 2 wk											_			
Callinectes sapidus	larvae, megalopa stage	N	S	imidacloprid	99.5%	nw	35		25	24 h	LC50	mortality	10	3 9	[88]
Callinectes sapidus	larvae, megalopa stage	N	S	TrimaxPro	40.8%	nw	35		25	24 h	LC50	mortality	313	3 9	[88]
Callinectes sapidus	juveniles	N	S	imidacloprid	99.5%	nw	35		25	24 h	LC50	mortality	1112	3 9	[88]
Callinectes sapidus	juveniles	N	S	TrimaxPro	40.8%	nw	35		25	24 h	LC50	mortality	817	3 9	[88]
Mollusca															
Crassostrea virginica		Υ	F	imidacloprid	96.2					96 h	EC50	shell growth	> 23300	2 11	[19,27]
Crassostrea virginica		Υ	F	imidacloprid	95.8					96 h	EC50	shell growth	> 145000	2 12	[19,27]
Insecta															
Aedes taeniorhynchus	1st instar	N	S	imidacloprid	tg	am	38	8	27	48 h	LC50	mortality	13	3 13	[84,85]
Aedes taeniorhynchus	1st instar	N	S	imidacloprid	tg	am	12.7	8	27	72 h	LC50	mortality	21	3 4	[84]
Pisces															
Cyprinodon variegatus	29 mm, 0.77 g	Υ	S	imidacloprid	96.2					96 h	LC50	mortality	161000	2 14	[19,27]

- 1 Concentrations not measured; no details on test water; no details on test compound; Microtox test.
- 2 Measured concentrations not reported
- 3 Actual concentrations not measured, test performed under light. Hyperosmotic conditions. Solvent control included.
- 4 Actual concentrations not measured, test performed under light. Isosmotic conditions. Solvent control included.
- DO below protocol requirements. Based on measured concentrations.
- 6 DAR only reports endpoints, but summary available in Anatra-Cordone and Durkin, 2005. Endpoint based on mean measured concentrations.
- 7 DAR only reports endpoints, but summary available in Anatra-Cordone and Durkin, 2005.
- 8 Concentrations measured in stock solutions only (103% of nominal), test performed under 16:8 h L:D. Acetone used as solvent in max. 0.1%. Test water parameters measured, but not reported.
- Concentrations not measured; author confirmed that ambient overhead fluorescent light was present, app. 10:14 h L:D
- Test compound added as solution in methanol, dried under vacuum before addition of nauplii suspension; incubation under light; concentrations not measured; no details on test substance
- 11 Test reported in table in the DAR. Not considered valid in the DAR because control performance was less than required. According to information in Anatra-Cordone and Durkin, 2005, results are based on measured concentrations.
- 12 DAR only reports EC50 >145 mg/L. Limit test, inhibition 22%. According to information in Anatra-Cordone and Durkin, 2005, results are based on measured concentrations.

- Actual concentrations not measured, test performed under light. Hyperosmotic conditions. Solvent control included. Endpoint refers to most relevant test duration and lowest endpoint.
- 14 DAR only reports endpoints. According to information in Anatra-Cordone and Durkin, 2005, results are based on measured concentrations.

Table A1.4 Chronic toxicity of imidacloprid for marine species

Species	Species properties	A	Test type	Test compound	Purity [%]		Hardness CaCO ₃ [mg/L]	pН	T [°C]	Exp. time		Test endpoint	Value [µg/L]	Ri Not	e Ref.
Crustacea							L 3, 1						E1: 3/ 1		
Americamysis bahia	<24 h old	Υ	F	imidacloprid	96.2%					28 d	NOEC	reproduction	0.56	3 1	[19]
Americamysis bahia	<24 h old	Υ	F	imidacloprid	96.2%					28 d	NOEC	growth	0.163	3 2	[19]
Callinectes sapidus	juveniles	N	S	imidacloprid	99.5%	nw						time to metamorphosis	≥ 3.8	3 3	[88]
Mollusca															
Crassostrea virginica		Υ	F	imidacloprid	96.2					96 h	NOEC	shell growth	≥ 23300	2 4	[19,27]
Crassostrea virginica		Υ	F	imidacloprid	95.8					96 h	NOEC	shell growth	< 145000	3 5	[19,27]

- 1 No further details on test conditions provided in DAR, information available from Anatra-Cordone and Durkin, 2005. Endpoint based on measured concentrations. Study rejected in DAR because reproduction rate of controls was too low, and information on individual females is missing.
- 2 No further details on test conditions provided in DAR, information available from Anatra-Cordone and Durkin, 2005. Study rejected in DAR because reproduction rate of controls was too low, and information on individual females is missing. NOEC for growth was 3.8 µg/L in first test, reason for difference is not clear.
- 3 Concentrations not measured; static test performed under ambient light
- Short-term test, but in view of endpoint considered as chronic. DAR only reports EC50 >23.3 mg/L. Information available from Anatra-Cordone and Durkin, 2005. Based on measured concentrations.
- 5 Short-term test, but in view of endpoint considered as chronic. DAR only reports EC50 >145 mg/L. Information available from Anatra-Cordone and Durkin, 2005. Based on measured concentrations. Decrease by 22% observed. Limit test, not possible to check concentration response relationship.

Appendix 2. Evaluation of micro- and mesocosmstudies

Study 1					
Reference	[47,48]				
Species; Population;	Phytoplankton, periphyton, invertebrates,				
Community	zooplankton				
Test Method	Mesocosm				
System properties	Outdoor ponds, 2.0-2.2 m diameter, 1.0 m deep,				
	3100-3800 L				
Formulation	Imidacloprid SL 200				
Exposure regime	0, 0.6, 1.5, 3.8, 9.4 and 23.5 μg/L; 2 applications				
	(May 2 and May 23)				
Analysed	Υ				
Temperature [°C]	Not reported in summary				
pH range	Not reported in summary				
Hardness [mg CaCO ₃ /L]	Not reported in summary				
Exposure time	182 d				
Criterion	NOEC				
Test endpoint	Population response of benthic invertebrates and				
	zooplankton				
Value [µg/L]	0.6 (nominal)				
GLP	Υ				
Guideline	OECD, SETAC				
Notes	Original reports not available, based on summary				
	and evaluation in DAR				
Ri	2				

Description

Test system

Thirteen mesocosms of 2.0-2.2 m diameter, 10 cm natural sediment and 1.0 m water, total 3100-3800 L, sediment not specified. Organisms were added with the sediment and phytoplankton and zooplankton were obtained from natural ponds. Ponds were left to establish during 6 months. Application took place on May 2 and 23, 2001, Treatments, 0, 0.6, 1.5, 3.8, 9.4 and 23.5 a.s. μ g/L in duplicate, untreated in triplicate. The substance was sprayed on the pond surface.

Analytical sampling

Concentration was measured in the application solutions, and in initial concentrations in pond water samplings, and regularly during the experiment in water and sediment.

Effect sampling

Effect parameters zooplankton, phytoplankton, chlorophyll-a, emerging insects and macrozoobenthos (by artificial substrate and sediment) were regularly monitored.

Statistical analysis

Univariate and multivariate analyses, PRC.

Results

Chemical analysis

Before the 2nd application, 12-20% of the nominal concentrations was present in the waterphase. The DT $_{50}$ ranged from 5.8 to 13.0 days at all test concentrations after both applications, average DT $_{50}$ 8.2 d. Initial measured concentrations are not reported, but it was concluded that nominal concentrations could be used to express initial exposure. Imidacloprid was found in the sediment, with the highest concentrations one week after second application. Thereafter, the concentration decreased to below LOQ of 7 μ g/kg in the highest concentrations after 56-70 d. In the lower treatments, a similar pattern was seen, however the concentrations were close to the LOQ. DT $_{50}$ for imidacloprid in the whole system (determined in the two highest dosages only) is 14.8 d.

Biological observations

Insects (caught by the emergence traps) were the most significantly affected organisms, from 1.5 μ g/L upwards. Effects were found on community parameters such as taxa richness, diversity, similarity and principal response. Chironomidae and Baetidae were the most sensitive taxa. No effects were found at 0.6 μ g/L, which can be seen as the NOEC. Indirect effects were found on algae, but only the NOEAEC (defined as recovery within 8 weeks after last application) of 23.5 μ g/L is reported. For zooplankton, a NOEC of 9.4 μ g/L is reported for copepods and cladocerans, for macrozoobenthos the NOEC for the most sensitive species (*Chaoborus* spp.) is 9.4 μ g/L.

Evaluation of the scientific reliability of the field study

Criteria for a suitable (semi)field study

- Does the test system represent a realistic freshwater community? Yes, natural populations of algae, zooplankton and macroinvertebrates were present. Macrophytes and fish were not present.
- Is the description of the experimental set-up adequate and unambiguous? Unclear, not all details are reported in the available summary.
- Is the exposure regime adequately described? Yes.
- Are the investigated endpoints sensitive and in accordance with the
 working mechanism of the compound? Yes, but potentially sensitive taxa
 such (Ostracoda, Amphipoda, Ephemeroptera) were not or not well
 represented.
- Is it possible to evaluate the observed effects statistically? No, no details concerning measurement endpoint are given for concentrations and effect data. The data are analysed according to up-to-date methods, however.

The study is considered less reliable (Ri 2) mainly because potentially sensitive taxa such as Ostracoda and Amphipoda are not or not well represented, and numbers of Ephemeroptera were too low for statistical analysis. In the DAR, the 0.6 μ g/L-treatment is considered as the NOEC (equivalent to 0.51 μ g/L expressed as 48-h TWA concentration). No agreement was reached on the level of the NOEAEC [19,89], mainly because doubts were raised on the representativeness of the recovery potential of chironomids for univoltine species. This however, is not relevant since recovery is not taken into account for EQS-derivation.

Conclusion

The NOEC of 0.6 µg/L nominal will be considered for EQS-derivation.

Study 2						
Reference	[90]					
Species;	Larvae of two frog species (Acris crepitans and Rana					
Population;	clamitans), periphyton, phytoplankton, zooplankton					
Community						
Test Method	Mesocosm					
System properties	Outdoor ponds, 1.85 m in diameter, ca. 900 L of water and					
	1 kg of litter					
Formulation	Merit					
Exposure regime	0 and 9000 μg/L					
Analysed	N					
Temperature [°C]	Not reported					
pH range	Not reported					
Hardness [mg	Not reported					
CaCO ₃ /L]						
Exposure time	55 d					
Criterion	NOEC					
Test endpoint	mortality of amphibians					
Value [µg/L]	9000					
GLP	No					
Guideline	No					
Notes	Two experiments were performed, (1) leaves systemically					
	treated with imidacloprid and (2) exposure via water.					
	Experiment 2 is summarized here.					
Ri	3 (no measurements of test concentration)					

Description

Test system

Aquatic communities in ponds, 1.85 m in diameter, ca. 900 L of water and 1 kg of litter, plankton introduced. Ponds were established ca. 1 month before application. Start experiment: 3 July 2008. Treatments: 0 and 9000 μ g a.s./L, four replicates. Other treatments were exposure to predators (fish, crayfish) and a combination of imidacloprid and predators. These treatments are left out of consideration here.

Analytical sampling

Concentration was not measured.

Effect sampling

Survival larvae of frog species *Acris crepitans* and *Ranaclamitans*, periphyton, phytoplankton, zooplankton.

Statistical analysis

Univariate analysis.

Results

Chemical analysis

No chemicals analysis reported.

Biological observations

Tadpoles of *A. crepitans* were significantly affected (mortality) at 9000 μ g/L. No effects for *R. clamitans*. Increased oxygen levels by the end of the study (55 days).

Evaluation of the scientific reliability of the field study

Criteria for a suitable (semi)field study

- Does the test system represent a realistic freshwater community? Yes, but the study only focussed on survival of amphibian larvae.
- Is the description of the experimental set-up adequate and unambiguous? Yes.
- Is the exposure regime adequately described? No. Intended concentration is reported only.
- Are the investigated endpoints sensitive and in accordance with the working mechanism of the compound? No, representatives of arthropods are 3 to 4 orders of magnitude more sensitive.
- Is it possible to evaluate the observed effects statistically? Yes (univariate only). However, one test concentration studied only. The effect class system is not designed for this type of studies.

The study is considered to be unreliable (Ri 3), due to the fact that the intended test concentration is not analytically verified. Furthermore, relatively insensitive species were tested.

Conclusion

This study will not be used for EQS-derivation.

Study 3					
Reference	[45]				
Species; Population;	caged Gammarus roeseli				
Community					
Test Method	Mesocosm				
System properties	Indoor stream mesocosm, 73 m, 16.1 m³, depth 0.2				
	m, stream velocity 10 cm/s				
Formulation	not specified				
Exposure regime	Pulse (3 x 12 h) – 7 d interval (application on day 1,				
	8, 15 and 50, 57, 64); 0 and 12 μg/L				
Analysed	Υ				
Temperature [°C]	16.4				
pH range	7.9				
Hardness [mg	176 (calculated from reported Ca ²⁺ and Mg ²⁺)				
CaCO ₃ /L]					
Exposure time	70				
Criterion					
Test endpoint	abundance, size distribution, reproductive status, litter				
	degradation				
Value [µg/L]					
GLP	No				
Guideline	No				
Notes	Single species test, no effect class evaluation possible				
Ri	2				

Description

Test system

Experimental stream indoor mesocosms (length 73 m, volume 16.1 m 3 , depth 0.2 m; stream velocity 10 cm/s). Treatment with two series of three 12 μ g/L pulses each, weekly interval, first series on day 1, 8 and 15, second series on

day 50, 57 and 64. Application overnight to prevent photolysis. Four pairs of treatment and control, treated on four consecutive days.

Field collected *Gammarus roeseli* were exposed in cages with alder or straw as food source, 32 cages per stream with 10 adults each and four additional cages with food but without animals per stream.

Analytical sampling

Homogeneity of application recorded using fluorescent tracer, exchange of water between stream and cages checked. Water samples every 4 days, analysis of imidacloprid, nutrients and ion compounds; pH, temperature, oxygen and conductivity were monitored permanently.

Effect sampling

Duplicate cages sampled weekly 1 h prior to imidacloprid application, between the two pulse series on day 21 and 28, and after the last pulse on day 70. Gammarids were counted, size distribution was recorded. Females carrying eggs or early instars were counted. Litter material was sieved out and separated into size classes, and analysed for lignin, cellulose and phenols, carbon and nitrogen.

Results

Chemical analysis

Longitudinal homogeneity reached within 10 flow cycles (135 min.) after application. Exchange of stream water with the cages reached within 15 min. Mean measured concentration was 11.9 μ g/L after reaching homogeneity, and dropped to 0.08 μ g/L when total water renewal was achieved. No significant differences between controls and treatments with respect to water characteristics.

Biological observations

No effects on total abundance, population development, litter decomposition, and size classes. Trend towards lower number of brood carrying females in imidacloprid treatment in presence with alder. At the end, number was 19.8 in control and 13 in treatment (34% difference). Difference was significant on day 49 and 70 when control and treatment were tested in pairs, but not when controls and treatments were tested against each other. Authors conclude that imidacloprid has a delayed effect on brood carrying females.

Evaluation of the scientific reliability of the field study

Criteria for a suitable (semi)field study

- Does the test system represent a realistic freshwater community? No, study is single species test in mesocosm.
- Is the description of the experimental set-up adequate and unambiguous? Yes.
- Is the exposure regime adequately described? Yes.
- Are the investigated endpoints sensitive and in accordance with the
 working mechanism of the compound? Yes, G. roeseli belongs to the
 relatively sensitive species on the basis of acute laboratory data
- Is it possible to evaluate the observed effects statistically? Yes/No. One test concentration studied only, difference in outcome of statistical analysis (testing in pairs/testing all treatments) indicates influence of experimental set-up. The effect class system is not designed for this type of studies.

In view of these criteria, the study is considered to be less reliable (Ri 2), mainly due to the unclear statistical evaluation and the fact that exposure was shorter than the time window considered for derivation of the MAC-QS_{fw, eco}. derivation. It is not fully clear what the observed reduction of 34% in brood carrying females means in terms of population development and how the food source interacts with the observed effect. The study can be used as an indication that repeated short-term pulses of 12 μ g/L may induce long-term or delayed effects, but it is not possible to establish a statistically underpinned NOEC.

Conclusion

This study is not used for EQS-derivation.

Study 4						
Reference	[40]					
Species; Population;	Leaf-shredding insects (stonefly: Pteronarcis dorsata					
Community	and crane fly: <i>Tipula</i> sp.), microbial decomposers.					
Test Method	Microcosm					
System properties	Aquaria: 13 X 30 x 21 cm, 6 L, indoor					
Formulation	Ecoprid					
Exposure regime	0, 1.2, 12, 120, 1200, 12000 μg/L (0, 1.0, 12.0, 135,1550, 15400 μg/L measured 1 h after treatment).					
Analysed	Υ					
Temperature [°C]	18.9-20.4					
pH range	6.1-7.1					
Hardness [mg	Not reported					
CaCO ₃ /L]						
Exposure time	14 d					
Criterion	LC10					
Test endpoint	Population response of leaf-shredding insects and microbial decomposers					
Value [µg/L]	13.3 (<i>P. dorsata</i>)					
GLP	No					
Guideline	No					
Notes	Multi-species test (2 insect species), short study (14 d),					
	no effect class evaluation possible					
Ri	2					

Description

Test system

Indoor microcosms (glass aquaria, LxWxH 30x13x21 cm), 6 L natural stream water (Sault Ste. Marie, Ontario, Canada), 300 mL stream detritus (1-5 mm sieved; organisms killed by freezing), 10 twigs from speckled alder (*Alnus incana*) trees. Stonefly nymphs (*Pteronarcys dorsata* Say) and cranefly larvae (*Tipula* sp. L.) sampled from local stream. Microcosms were operated for 1 week prior to treatment, organisms (n=9) introduced 2 days before treatment. Treatments 0, 1.0, 12.0, 135, 1550 and 15400 μ g a.s./L, four replicates plus two additional replicates for fate assessment. The substance was added to the water surface, while the water was gently stirred.

Analytical sampling

Concentration was in initial concentrations in water samples, and regularly during the experiment in water and leaf material introduced.

Effect sampling

Effect parameters: Stonefly and cranefly were counted after 14 days, microbial decomposition was monitored after 7 and 14 days.

Statistical analysis

Univariate analysis.

Results

Chemical analysis

Initial measured concentrations were 1.0, 12.0, 135, 1550 and 15400 μg a.s./L. Half-lives not reported. Concentrations, were ca. 50% (mean) after 14 days. Average actual concentrations calculated as ≈ 0.2 , 6.1, 73, 902 and 9664 μg a.s./L based on reported measured concentrations in fate replicates. Imidacloprid was found in the introduced leaf material taken in samples of 2 days and later.

Biological observations

Both insect species were significantly affected (mortality) from 135 μ g/L and higher. No effects (mortality; including mordibundancy) were found at 12 μ g/L, which can be seen as the NOEC. There were no significant differences from controls in oxygen uptake at any test concentration. Microbial decomposition activity was significantly increased at the highest test concentration.

Evaluation of the scientific reliability of the field study

Criteria for a suitable (semi)field study

- Does the test system represent a realistic freshwater community? No, this study may be considered as a multi-species test (two insect species tested).
- Is the description of the experimental set-up adequate and unambiguous? Yes, but number of test organisms is low.
- Is the exposure regime adequately described? Yes.
- Are the investigated endpoints sensitive and in accordance with the working mechanism of the compound? Yes, in case of the insects.
- Is it possible to evaluate the observed effects statistically? Yes (univariate only). However, no realistic invertebrate community was tested. Duration of test was 14 days, recovery and community interaction cannot be evaluated. The effect class system cannot be applied.

The study is considered to be less reliable (Ri 2) for evaluation of effects on realistic freshwater communitie. Using the reported measured concentrations and data on mortality, the 14-days LC10 was estimated as 13.3 μ g a.s./L for *P. dorsata* and 50 μ g/L for *Tipula* sp. The latter value is not considered reliable due to an ambiguous fit.

Conclusion

The LC10 of 13.3 μ g/L for *P. dorsata* is included in the chronic dataset.

Study 5							
Reference	[41]						
Species; Population;	Leaf-shredding insects (stonefly: Pteronarcis dorsata						
Community	and crane fly: <i>Tipula</i> sp.), microbial decomposers.						
Test Method	Microcosm						
System properties	Aquaria: 13 X 30 x 21 cm, 6 L, indoor						
Formulation	Confidor 200SL						
Exposure regime	Single application of 0, 12, 24, 48, 96 µg/L						
Analysed	Υ						
Temperature [°C]	20 ± 3						
pH range	Not reported						
Hardness [mg	Not reported						
CaCO ₃ /L]							
Exposure time	14 d						
Criterion	LC10, LC50, NOEC						
Test endpoint	Mortality, feeding						
Value [µg/L]	LC10 15.8, LC50 41 (<i>P. dorsata</i>), LC10 34, LC50 > 63						
	(Tipulia sp.)						
	NOEC feeding < 8.8						
GLP	No						
Guideline	No						
Notes	Multi-species test (2 insect species), short study (14 d),						
	no effect class evaluation possible						
Ri	2						

Description

Test system

Indoor microcosms (glass aquaria, LxWxH 30x13x21 cm), 6 L natural stream water, 300 mL stream detritus (1-5 mm sieved; organisms killed by freezing), 10 twigs from speckled alder (*Alnus incana*) trees. Stonefly nymphs (*Pteronarcys dorsata* Say) and cranefly larvae (*Tipula* sp. L.) sampled from local stream. Microcosms were set up 1 week prior to treatment, organisms (n=9) introduced 2 days before treatment. Treatments, 0, 12, 24, 48 and 96 μ g a.s./L, in triplicate. The substance was added to the water surface, mixing by gently stirring.

Analytical sampling

Initial concentrations in water samples were measured, and by the end of the study (14 d).

Effect sampling

Effect parameters: Stonefly and cranefly were counted after 14 days, microbial decomposition was monitored.

Statistical analysis

Univariate analysis.

Results

Chemical analysis

Average initial within 96%–108% of nominal (CV < 10%), final concentrations 53%–55%. Geometric mean concentrations were 8.8, 16, 32 and 63 μ g/L.

Effects

Mortality of *P. dorsata* was 3.7% in the control, 3.7 and 7.3% at 12 and 24 μ g/L, and 40.7 and 70.4% at 48 and 96 μ g/L, latter significant. 14-days LC10 was reported as 20.8 μ g/L, 14-days LC50 70.1 μ g/L. Mortality of the cranefly, *Tipula* sp., was 11.1% in the control, 7.4, 7.4, 18.5 and 33.3% at the respective test concentrations, differences were not significant. 14-days LC10 was reported as 16.2 μ g/L, 14-days LC50 139 μ g/L. Live tipulids were sluggish, authors conclude that if those had been quantified and counted as dead, the effects on *Tipula* were similar to those on *P. dorsata*.

Mass loss of leaf material in the imidacloprid treatments was significantly lower than in the control, no visible signs of shredding at 48 and 96 μ g/L. Signs of insect feeding at lower concentrations, but at lower rates than the control. No indications of inhibition of microbial decomposition. Authors conclude that concentrations of 12 μ g/L are likely to cause significant feeding inhibition in leaf-shredding insects which has the potential to interfere with ecosystem processes.

Evaluation of the scientific reliability of the field study

Criteria for a suitable (semi)field study

- Does the test system represent a realistic freshwater community? No, this study may be considered a multi-species test (two insect species tested).
- Is the description of the experimental set-up adequate and unambiguous? Yes, but number of replicates and organisms is low.
- Is the exposure regime adequately described? Yes, but no analytical measurements in between
- Are the investigated endpoints sensitive and in accordance with the working mechanism of the compound? Yes, in case of the insects.
- Is it possible to evaluate the observed effects statistically? Yes (univariate only). However, no realistic invertebrate community was tested. Duration of test was 14 days, recovery and community interaction cannot be evaluated. The effect class system cannot be applied.

The study is considered to be less reliable (Ri 2) for evaluation of effects on realistic freshwater communities. Endpoints for *P. dorsata* were recalculated using geometric mean concentrations, LC10 15.8, LC50 41 μ g/L. LC10 for *Tipula* sp. is estimated as 34 μ g/L, LC50 is > 63 μ g/L.

Conclusion

LC10 15.8 μ g/L and LC50 41 μ g/L for *P. dorsata* and LC10 34 μ g/L and LC50 > 63 μ g/L for *Tipula* sp. are included in the chronic dataset.

Study 6						
Reference	[51]					
Species;	Benthic macroinvertebrate assemblage, periphyton					
Population;						
Community						
Test Method	Mesocosm					
System properties	Outdoor stream mesocosms; planar area: 0.065 m², 10 L volume, flow-through with water velocity of 11-12 cm/s, coarse and fine substratum					
Formulation	Admire (240 g a.s./L)					
Exposure regime	Pulse (3 x 24-h) – 7d interval: 0, 1.63, 17.60 μg/L. Average measured peak concentrations					
Analysed	Υ					
Temperature [°C]	14.5 - 14.9					
pH range	Not reported					
Hardness [mg CaCO ₃ /L]	Not reported					
Exposure time	20 d					
Criterion	NOEC (Class 1-2)					
Test endpoint	Benthic invertebrates: abundance, emergence; microbial					
	decomposition leaf material					
Value [μg/L]	1.63 (average measured peak concentration)					
GLP	No					
Guideline	No					
Notes	Short study (20 d), one sampling date, no effect class evaluation possible					
Ri	2					

Test system

Artificial streams, flow-through, 10 L volume. Inoculated with a benthic invertebrate stream community. The sediment consisted of substratum obtained from gravel beds adjacent to the invertebrate sampling site (Nashwaak River, Canada). Test specimens were introduced 1 day before application. Treatment with three 24-hour pulses at a 7 days interval, concentrations 0, 2 and 20 μ g a.s./L. Number of replicates probably 16 (not fully clear from paper). Test performed in August 2005.

Analytical sampling

Samples for imidacloprid analyses were taken at the onset, during and at the end of the pulse.

Effect sampling

Abundance and emergence of benthic invertebrates, one sampling at the end of the experiment (20 days). Microbial decomposition leaf material.

Statistical analysis

Univariate analysis and biotic indices for community response

Results

Chemical analysis

Average measured concentrations over the 24-hours pulse were 1.63 and 17.60 $\mu g/L.$

Biological observations

High densities of insects were observed in the control by day 20, dominant taxa were Heptageniidae (Ephemeroptera), Lepidostomatidae, Hydropsychidae and Helicopsychidae (Trichoptera), chironomids, dipteran pupae and elmidae beetles. No differences between both treatments and controls on microbial decomposition rates. Imidacloprid had an adverse effect on benthic communities, ca. 5% reduction at the low pulse (not significant) and 42% at the high pulse (significant). In the high pulse treatment a significant reduction (69%) was observed in combined Ephemeroptera, Plecoptera and Tricoptera taxa (EPT-taxa). Coleoptera were less affected (ca. 29 % reduction). No significant effects were observed for chironomids. Oligochaetes showed a high sensitivity (75% reduction, significant).

Evaluation of the scientific reliability of the field study

Criteria for a suitable (semi)field study

- Does the test system represent a realistic freshwater community? Yes.
- Is the description of the experimental set-up adequate and unambiguous? Yes.
- Is the exposure regime adequately described? Yes.
- Are the investigated endpoints sensitive and in accordance with the working mechanism of the compound? Yes, sensitive insect taxa included.
- Is it possible to evaluate the observed effects statistically? Yes. However, effect observations were made only shortly (7 days) after the last of the three 24-hour pulses and recovery and community interactions cannot be evaluated. The effect class system cannot be applied by its full merits, since it involved one sampling date only.

The study is considered less reliable (Ri 2) for the evaluation of effects of short-term exposure peaks on realistic freshwater communities, because longer-term effects were not evaluated. However, Effect class 1 and 2 could be derived for the endpoints reported:

	Treatment level [µg/L]		
	1.63 17		
EPT*	1-2↓	4↓	
Diptera (chironomids)	1	1	
Coleoptera	1	1-2↓	
Oligochaeta	1	4↓	
Microbial decomposition	1	1	
Most sensitive endpoint	1-2	4	

^{*}Ephemeroptera, Plecoptera, Trichoptera

Conclusion

The NOEC is 1.63 µg a.s./L, this value is considered for EQS-derivation.

Study 7	
Reference	[52]
Species; Population; Community	Benthic steam community; effects on two mayfly species reported
Test Method	Microcosm
System properties	Artificial streams; planar area: 0.065 m², 10 L volume, flow-through with water velocity of 11-12 cm/s, coarse and fine substratum; outdoor
Formulation	Admire
Exposure regime	Pulse (12-h): 0, 0.1, 0.3, 3.9, 9.1 μg/L Continuous (20 d): 0, 0.1, 0.3, 0.8 μg/L (actual measured)
Analysed	Υ
Temperature [°C]	Not reported
pH range	Not reported
Hardness [mg CaCO ₃ /L]	Not reported
Exposure time	20 d
Criterion	NOEC
Test endpoint	Abundance, emergence, adult body size
Value [μg/L]	Pulse (12-h): 3.9 (abundance); 3.9 (emergence); < 0.1 (size); Continuous(20 d): 0.3 (abundance); 0.1 (emergence); < 0.1 (size)
GLP	No
Guideline	No
Notes	Effects on 2 mayfly species reported, being part of a benthic invertebrate stream community. Short study (20 d), no effect class evaluation possible
Ri	2

Test system

Artificial streams, flow-through, 10 L volume. Inoculated with a benthic invertebrate stream community. Sediment consisted of substratum obtained from gravel beds adjacent to the invertebrate sampling site (Nashwaak River, Canada). Test location: Agri-foods Canada facility, New Brunswick, Canada. Test organisms: mayfly species Epeorus spp. (Heptageniidae) and Baetis spp. (Baetidae), introduced 1 day before application. Intended treatments; pulse (12h): 0, 0.1, 0.5, 1, 5 and 10 μ g a.s./L and continuous: 0, 0.1, 0.5, 1 μ g a.s./L, n= 8 in both regimes.

Analytical sampling

Samples for imidacloprid analyses were taken at the onset, during and at the end of the pulse and every 5 days for the continuous exposures.

Effect sampling

Abundance, emergence, adult body size.

Statistical analysis

Univariate analysis

Results

Chemical analysis

Actual measured concentrations 0, 0.1, 0.3, 3.9, 9.1 μ g a.s./L for pulse treatment and 0, 0.1, 0.3, 0.8 μ g a.s./L for continuous exposure.

Biological observations

No differences between both treatment types and controls in algal biomass (chlorofyll-a, ash free biomass). NOECs for abundance, emergence and thorax or head length are presented in the table.

Exposure		Endpoint	NOEC
type			[µg/L]
Continuous	Epeorus spp.	abundance	0.3
		emergence	0.1
		adult male thorax length	0.1
		adult female thorax/head length	≥ 0.8
	Baetis spp.	abundance	0.3
		emergence	≥ 0.8
		adult male head length	< 0.1
		adult female thorax/head length	≥ 0.8
Pulse	Epeorus spp.	abundance	3.9
		emergence	3.9
		adult male thorax length	< 0.1
		adult female thorax/head length	≥ 9.1
	Baetis spp.	abundance	≥ 9.1
		emergence	≥ 9.1
		adult male head length	< 0.1
		adult female thorax/head length	≥ 9.1

Evaluation of the scientific reliability of the field study

Criteria for a suitable (semi)field study

- Does the test system represent a realistic freshwater community? Yes, but the study focussed on effects on two mayfly genera. Effects on other species are not reported.
- Is the description of the experimental set-up adequate and unambiguous? Yes.
- Is the exposure regime adequately described? Yes.
- Are the investigated endpoints sensitive and in accordance with the working mechanism of the compound? Yes, mayflies belong to the most sensitive taxa from the laboratory dataset.
- Is it possible to evaluate the observed effects statistically? Yes
 (univariate only). Duration of test was 20 days, recovery and community
 interactions cannot be/were not evaluated. The effect class system
 cannot be applied by its full merits.

In view of these criteria, the study is considered less reliable (Ri 2), mainly because species of only two genera were reported, and longer-term effects cannot be evaluated. However, NOECs (Class 1 effects) could be derived for species reported.

Conclusion

The 12-hours NOECs of 3.9 μ g/L and the 20-days NOEC of 0.1 μ g/L are considered for EQS-derivation. Effect on head and thorax length is taken into account.

Study 8					
Reference	[53,54]				
Species;	Macrophytes, plankton, macroinvertebrates				
Population;					
Community					
Test Method	Mesocosm				
System properties	Indoor streams, 75 m long, 1 m wide, 0.2 m water, flow- through with water velocity of 10 cm/s, sand / fine sediment substratum, pool sections				
Formulation	Imidacloprid, 99.9% pure				
Exposure regime	Pulse (3 x 12 h) – 7 d interval; two series, 2nd series				
	about 50 d after 1st pulse; 0 and 12 µg/L				
Analysed	Υ				
Temperature [°C]	15.7 - 16.3 (1st series), 17.5 - 19.3 (2nd series)				
pH range	7.5-8.2				
Hardness [mg CaCO ₃ /L]	Not reported				
Exposure time	11 w				
Criterion	NOEC				
Test endpoint	community, drift				
Value [µg/L]	< 12				
GLP	No				
Guideline	No				
Notes	Only one concentration tested				
Ri	2				

Test system

Experimental stream indoor mesocosms (length 753 m, 1 m wide, depth 0.2 m; stream velocity 10 cm/s), sand substratum and equipped with 4 pool sections (3 m long, 1.2 m wide), stocked with macrophyte *Sparganium erectum*. Treatment with two series of three 12 μ g/L pulses each, weekly interval, simulating spring and autumn treatment, 2nd series started about 50 days after 1st pulse. Application overnight to prevent photolysis. Four pairs of treatment and control, treated on four consecutive days. Streams were stocked with straw litterbags that had been kept for 2 weeks in a reference stream in spring and were then transported to the mesocosm site and emptied in the streams. Re-stocking with summer communities about two weeks before the 2nd pulse series.

Analytical sampling

Homogeneity of application recorded using fluorescent tracer. Water samples were taken 11.5 h after starting the pulses.

Effect sampling

Quantitative emergence and benthos sampling on 10 occasions, 5 weekly samples during each pulse series. Emergence with 1 m² traps, benthos sampling at walls, sand and straw, total abundance estimated using sand to straw area. Live counts of large gammarids were made repreatedly in designated sand areas, *Neureclipsis* sp. (Trichoptera, caddisfly) were quantified by counting filtration nets prior to the 2nd application series.

Drift before, during, and after the pulses was measured using two drift nets that were placed in the middle of the stream bottom above the sediment surface in front of the 2nd and the 4th pool section (distance between nets = 20 m) with

opening in flow direction. Additional drift nets were placed in each stream behind pool sections 1 and 3 on three. In the week prior to dosing, cathes were made during day and night as a references, after dosing, each drift net was checked at the end of each pulse (1st night), at the end of the following day (1st day), and on the second morning (2nd night). Specimens of *G. roeseli* \leq 3.8 mm total length were counted separately, the 3 large size classes were pooled to one class > 3.8 mm).

Statistical analysis

Univariate and multivariate analysis (PRC), effects of imidacloprid on macroinvertebrate drift were calculated as quotient of all driftnet catches in the treatments and all driftnet catches in the corresponding control stream. Significant differences (p < 0.05) between treatment and control catches of driftnets, which were synchronously exposed in the same stream mesocosms, and between replicates were tested pulse by pulse with the Wilcoxon signed-rank test.

Results

Chemical analysis

Longitudinal homogeneity confirmed, measured concentrations during pulse 11.1 to 12.1 μg a.s./L.

Biological observations

Abundance, emergence [54]

Colonisation in spring resulted in mean abundance of 2432 individual per litter bag, dipterans were dominant followed by crustaceans. Latter group was dominant in the summer stock. Coefficient of variation between bags in spring and summer was ≈ 30 and 40% for crustaceans and ephemerids, ≈ 30 and 55% for trichopterans and 14 and 30% for dipterans. Higher variation was found for rare taxa. All functional groups were present, percentage of predators was ca. 10%. Initial abundance in the streams was ca. 1000 ind/m². Overall, 48 taxa were identified, with dipterans being most species rich. Gammarids increased after introduction, insects decreased.

Number of taxa declined over time in control and treatments, mainly due to emergence of dipterans. PRC on abundance of taxa was not significant and showed weak effects of treatment. Species weights indicated that Tanypodinae (Chironomidae) and *Baetis* (Ephemeroptera) were among the potentially affected taxa. Numbers of Tanypodinae were significantly lower in the treated streams on 2 successive occasions during the 2nd pulse series, non-significant decreases were observed for Diptera, Trichoptera and Ephemeroptera during the 2nd pulse series.

Non-emerging arthropods such as gammarids increased during the study. Based on population count data alone, no effects were observed. Live counts revealed significantly lower numbers of larger gammaridson sediment immediately after the 5th pulse. Numbers increased to control values but were significantly lower after the 6th pulse and remained significantly lower on three consecutive samplings for about 10 days. Authors conclude that gammarids have sought shelter in the straw after the pulses and returned to the sand after exposure.

Neureclipsis sp. showed a steady decrease in the control during the 2nd pulse series. In the treatment, numbers remained fairly constant but declined to almost 0 after the 4th pulse and were significantly different from the control on

four consecutive samplings during ca. 10 days. Unlike for gammarids, no recovery was observed.

PRC for emergent insects was significant on three sampling occasions after the 4th pulse. A similar but not significant pattern was observed after the 1st pulse series. Significantly lower emergence was observed for

- Tanypodinae: 1 sampling after pulse 3, 2 samplings after pulse 5, no emergence on last sampling (day 70)
- Tanytarsini: 1 sampling after pulse 4
- Orthocladiinae: 1 sampling after pulse 4
- Ephemeroptera: no emergence during 1st pulse series, significant reduction from 4th pulse on, no emergence on last sampling day.

Drift [53]

Pre-exposure catches revealed significantly higher night-time drift in *Baetis* sp., chironomids (except for some species), higher night drift became more apparent during 2nd series in summer. Only few catches for *Caenis* sp. (Ephemeroptera). Significantly higher drift during and after imidacloprid pulses was observed for *Baetis* sp., *Corynoneura* sp. and Orthocladiinae (Chironomidae) and *G. roeseli* (< 3.8 mm). No significant effect on *G. roeseli* (> 3.8 mm) and Tanypodinae.

Evaluation of the scientific reliability of the field study

Criteria for a suitable (semi)field study

- Does the test system represent a realistic freshwater community? Yes.
- Is the description of the experimental set-up adequate and unambiguous? Yes.
- Is the exposure regime adequately described? Yes.
- Are the investigated endpoints sensitive and in accordance with the working mechanism of the compound? Yes.
- Is it possible to evaluate the observed effects statistically? Yes. Last observations were 70 days (emergence; taxa abundance) or 95 days (gammarids, Neureclipsis) after 1st pulse, but because of restocking 2nd series should be considered separately and duration is 3 6 weeks. The effect class system cannot be applied by its full merits.

The study is considered to be less reliable (Ri 2), mainly because only one concentration was tested and duration was too short to consider recovery. Restocking can be considered as a kind of re-colonisation, which under natural conditions would only be possible from uncontaminated upstream water. Pulses were shorter than the time window considered for derivation of the MAC-QS $_{\text{fw}, eco}$, but repetition represents a worst case. The effects are summarised below according to the Effect class methodology.

	Effect class
abundance	
all taxa	1
Gammarus sp.	1
Diptera	1-2↓
Tanypodinae	3A
Trichoptera	4#
Ephemeroptera	3A [#]
PRC	1
life counts	
gammarids	3A

Neureclipsis sp.	3A
emergence	
Tanypodinae	4
Tanytarsini	2
Orthocladiinae	2
Ephemeroptera	4
PRC	4

not indicated as significant, but figure suggests otherwise

Conclusion

The study shows that repeated 12-hour pulses of 12 µg a.s./L lead to effects on abundance and emergence of several taxa, with Ephemeroptera (affected after single pulse), Trichoptera (id.), Chironomidae and Gammaridae being most sensitive. Increased drift was observed for *Baetis*, chironomids and *G. roeseli*. Since only one, relatively high, concentration was tested, the relevance for EQS-derivation is limited, but the study will be considered for EQS-derivation.

Study 9	
Reference	[50]
Species; Population; Community	Macroinvertebrates
Test Method	Outdoor microcosm
System properties	Cosms: 45.5 cm x 30 cm x 21 cm
Formulation	Not specified
Exposure regime	Υ
Analysed	3 weekly applications
Temperature [°C]	
pH range	
Hardness [mg CaCO ₃ /L]	
Exposure time	10 weeks
Criterion	NOEC
Test endpoint	Abundance, emergence
Value [µg/L]	1.4 μg/L nominal
GLP	No
Guideline	No
Notes	
Ri	2

Description

Test system.

56 outdoor microcosms (20 L, lxwxh = 45.5 cm x 30 cm x 21 cm) in a reservoir pond in Berlin, Germany. Microcosms were filled with 750 mL fine homogenized sediment (silt and clay loam with 3% o.m.), from an uncontaminated lake, and with 15 L water from the reservoir pond. The microcosm were left floating, covered with a 2 cm mesh net for colonization for three weeks (late May to June). During this period every week an application with imidacloprid took place. After this colonization period, microcosm were covered with a fine nylon mesh and sampling lasted for seven weeks after third application.

In the control microcosms an average number of 680 individuals/microcosm was collected during the entire experiment. The macroinvertebrate assemblage was dominated by Chironomidae (Diptera) (65 %) from the subfamilies Chironominae, Tanypodinae, and Orthocladiinae. The second most abundant and frequent family was Gastropoda (18 %), represented by the pulmonate snail

Radix sp., which probably entered the microcosms at the planktonic stage with the water. Other relatively abundant insect families were Ephemeroptera (Caenis sp. and Cloeon sp.), whereas Ceratopogonidae. Chaoboridae, Culicidae, other Diptera, and Nematoda were present in only a small number of microcosms.

Systems were exposed to 0.6, 1.4, 3.2, 7.5, 17.3, and 40 μ g/L imidacloprid. 7 replicates for treatments, 14 replicates for untreated control. Exact dates (and year) not specified in the paper. Test item not specified else than imidacloprid.

Analytical sampling.

Concentrations were measured 6 h, 1 week and 6 weeks after each treatment and at the end of the experiment. Furthermore sacrificial tanks were set up for the 17.3 μ g/L treatment. Here water was additionally sampled 1, 2, 3 and 7 days after each pulse. Whole sediment was taken from the sacrificial microcosm for chemical analyses.

Effect sampling.

Abiotic parameters (O_2 , pH, temperature, turbidity, conductivity) were measured weekly. UV radiation was also recorded. Emerging insects were collected weekly after the third pulse. At the end of the experiment the content of each microcosm was filtered through a 500 μ m sieve to collect remaining insect larvae. Total abundance, number of species and number of adults of nommon taxa were monitored as endpoints for the experiment.

Statistical analysis

For comparison of abundance, Kruskal-Wallis and Mann-Whitney U tests were performed. Jonckheere-Terpstra trens test was used to detect trend of gradually decrease of endpoints with increasing imidacloprid concentrations. Power analysis was performed to determine the power of the study design.

Results

Chemical analysis.

The DT50 for dissipation in water was determined as 20-36 h in the 17.3 μ g/L treated cosms. At the end of the experiment concentrations were < 6% of nominal. TWA values were calculated for all treatments. Although not specified in the manuscript, it is assumed from the context that the TWA is calculated for 1 week, the results are then consistent with the reported DT50. Table below shows the nominal concentrations and the corresponding mean TWA concentrations (mean for three pulse dosages).

Imidacloprid concentrations, nominal and TWA concentrations.

imadelopita concentrations, normal and TWA concentrations.							
Nominal	Mean	Water	Sediment				
concentration (µg/L)	TWA	concentration at	concentration at end				
	(µg/L)	end of experiment	of experiment				
		(µg/L)	(µg/kg)				
0.6	0.2	0.0	0.0				
1.4	0.4	0.06	0.0				
3.2	1.0	0.13	0.0				
7.5	2.3	0.37	0.02				
17.3	5.2	0.99	0.04				
40	12	1.72	0.13				

The authors discuss that due to the rapid degradation in the water column (partly due to high radiation, and unhindered transmission in water),

concentrations in sediment are low as well, and the study might represent a best-case scenario.

Abiotic parameters

pH 8-9, water temperature 16-22°C, conductivity decreased from 835 μ S/cm at the start to 615 μ S/cm at the end. Air temperature 10-24°C, radiation 6-11 μ W/cm². Conductivity decreased in cosms with the highest growth. Differences were present till the end of the experiment.

Biological observations.

Macroinvertebrates

Total # of species and abundance of Chironimidae were significantly decreased in the two highest treatment levels. Effects were caused mainly by three species belonging to the subfamily Orhocladiinae. For Tanypodinae, effects were seen from 7.5 μ g/L, significant in the highest treatment.

Number of *Radix* sp. increased significantly at the highest concentration. Ephemeroptera decreased significantly in the two highest concentrations. Since not all control cosms were colonised, it was not possible to run a powerful statistical test.

Effects on emergence appeared to be related to the mortality in the cosms rather than to effects on emergence itself. Ephemeroptera were sensitive, at concentrations $>1.4 \mu g/L$ nominal no emerging *Caenis* sp. adults were found.

Evaluation of the scientific reliability of the field study

Criteria for a suitable (semi)field study

- Does the test system represent a realistic freshwater community? Partly, macro-invertebrates that can colonize the cosm or were introduced with the sediment were studied and reported. Other organisms were not reported.
- 2. Is the description of the experimental set-up adequate and unambiguous? Yes.
- 3. Is the exposure regime adequately described? No, Test item not described in detail, application method not specified.
- 4. Are the investigated endpoints sensitive and in accordance with the working mechanism of the compound? Yes, imidacloprid is an insecticide, and insects are included in the study.
- 5. Is it possible to evaluate the observed effects statistically? Data are not presented, it is indicated that the power was estimated, data are not presented however. Re-evaluating is not possible with the available data.

In view of these criteria, the study is considered less reliable (Ri 2). Clear effects occur at the two highest concentrations of 17.3 and 40 μ g/L nominal. However, for some groups (Ephemeroptera) emergence effects were found in the 3.2 μ g/L treatment. At 1.4 μ g/L no significant effects were found. Considering the DT50 of 28 hours, the 48-hours TWA for this treatment is 0.82 μ g/L.

Conclusion

The study shows that repeated applications of 1.4 μg a.s./L do not lead to effects on abundance and emergence of macroinvertebrates. Due to the fast dissipation of the compound, the study cannot be used for derivation of the QS_{fw, eco}, but the 48-hours TWA NOEC of 0.82 $\mu g/L$ is considered for the MACQS_{fw, eco}

Study 10	
Reference	[55]
Species; Population;	Cloeon dipterum, macrophytes; large predators
Community	actively removed
Test Method	Outdoor enclosure
System properties	Enclosures in outdoor experimental ditch, fine sandy
System properties	clay sediment
Formulation	Imidacloprid SL 200
Exposure regime	two applications, 21 d interval; concentrations 0,
Exposure regime	0.097, 0.243, 0.608, 1.520, 3.800 μg a.s./L.
Analysed	Υ
Temperature [°C]	5,5 - 14,8
pH range	7.62-10.16
Hardness [mg	Not specified
CaCO ₃ /L]	Not specified
Exposure time	Application on day 0 and 21, test duration until 37 d
Criterion	NOEC
Test endpoint	Abundance
Value [µg/L]	1.52 (nominal)
GIP	Υ
<u> </u>	1
Guideline	Cinale anasias bask
Notes	Single species test
Ri	2

Test system

Enclosures of a polycarbonate, translucent cylinder (diameter: 1.05 m; height: 0.9 m; water volume: ca. 0.45 m^3), placed in experimental ditches. Total of 21 enclosures (four controls, 15 treated at five different concentrations (n=3), two shaded fate enclosures). Fine sandy clay sediment. Water from a water supply basin at the test facility. Macrophytes were present (developing Elodea vegetation). Light aeration during experiment.

Aquatic larvae of the mayfly *Cloeon dipterum* were inserted on three occasions (September 16th, 19th and 23rd, 2013). Larvae were collected from previously unused and therefore uncontaminated experimental ditches at the test facility and equally divided over the test systems. In total approximately 900 individuals per enclosure were introduced. Larger predators such as backswimmers (Notonecta) and dragonfly larvae (Anisoptera) and were actively removed. Test substance was applied twice on October 7th and October 28st, 2013. Treatment levels: 0 μ g/L (control), 0.097, 0.243, 0.608, 1.520, 3.800 μ g a.s./L. Application by pouring dosing solutions and gently stirring.

Analytical sampling

In all enclosures, water samples were taken (day 0: 2 h before application; day 21: 1 h before application), and 4 hours after the application. Additional samples in the (1.520 and 3.800 μ g a.s./L, both shaded and unshaded) test systems at 2, 4, 7, 11, 14, 23, 25, 28, 32, and 37 days post first application and sediment samples at day -5, 14, 28 and 37 post first application. Macrophytes were sampled for fate analysis on day 37 in the control systems and fate enclosures (1.520 and 3.800 μ g a.s./L, shaded and unshaded).

Effect sampling

Nymphal stages of the mayfly *Cloeon dipterum* were captured by using net samples combined with an artificial substrate (pebble basket). Sampling took place -5, 2, 9, 16, 23, 30 and 37 after the first application. *Cloeon dipterum* nymphs were counted alive and returned to their respective test system. No emergence due to low temperatures.

Temperature, pH, dissolved oxygen (DO) and electrical conductivity (EC) were measured in the morning on days 2, 9, 16, 23, 30 and 37 after first application.

Statistical analysis

Univariate analyses of abundance of *Cloeon dipterum* and community metabolism endpoints.

Results

Chemical analysis

Concentration in dosing solutions were 93-101% of nominal. Measured concentrations 4 h after 1st application were < LOD for control and 0.097 μg a.s./L, 260% of nominal at 0.024 μg a.s./L, and 82-109% of nominal at the higher concentrations. Concentrations at 0.024 μg a.s./L are considered not reliable according to the authors due to the low level and incomplete mixing. At 1.52 and 3.8 μg a.s./L, 36 and 40%% of initial was present just before the 2nd application. The DT50 for dissipation from the water phase was estimated by the evaluator by non-linear regression of 1st order exponential decay using GraphPad Prism 6.03 with measured concentrations at 1.52 and 3.8 μg a.s./L. DT50 in the respective treatment levels was 10.8 and 13.0 days after the first application, and 14 and 14.5 days after the second.

Statistical power

Authors calculated the Minimum Detectable Difference (MDD), which is the percentage change relative to the control that is needed to detect a change as significant. MDD was 33% before application, and ranged from 49% to 63% after application.

Biological observations

Abundance in the respective treatments is presented in the figures below (copied from report). No statistically significant effects were observed at concentrations up to and including 1.52 μ g a.s./L nominal. At 3.8 μ g a.s./L, a clear decline was observed in one replicate on three last sampling dates (days 23, 30 and 37). Authors conclude that 1.52 μ g a.s./L is the NOEC.

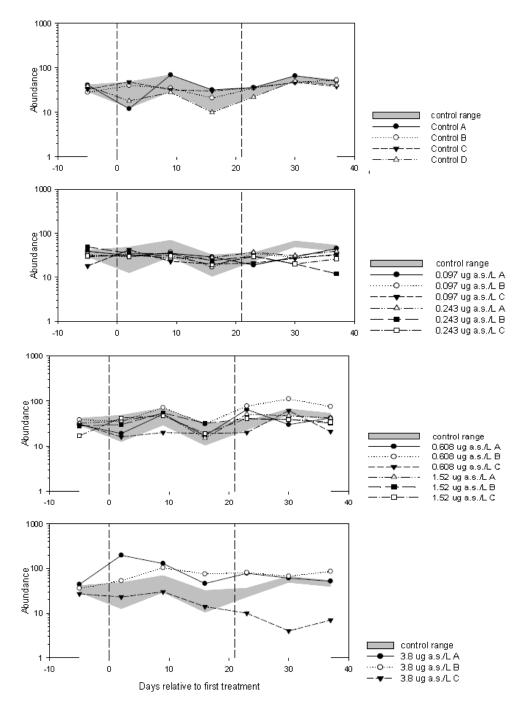


Figure 1. Abundance of Cloeon dipterum over time

Evaluation of the scientific reliability of the field study

Criteria for a suitable (semi)field study

- Does the test system represent a realistic freshwater community? Partly, species composition not described, large predators removed
- Is the description of the experimental set-up adequate and unambiguous? Partly, efficiency of sampling method not specified.
- Is the exposure regime adequately described? Yes.

- Are the investigated endpoints sensitive and in accordance with the working mechanism of the compound? Yes, test was aimed at a specific sensitive organism.
- Is it possible to evaluate the observed effects statistically? Yes.

It is recognised that the MDD achieved in this study is considered acceptable by EFSA [49]. However, it is noted that EFSA considers an MDD of 70-90% acceptable, whereas for field studies with other organism groups (earthworms, non-target arthropods) a lower percentage of 50% is used [91,92]. Since the MDD is only recently introduced as a reporting requirement for mesocosm studies, experience has to be gained as to how the MDD should be used as a criterion for assigning the reliability index.

Specimens are nymphal stages, sampled with a net and from pebble baskets. In a number of cases (e.g. cosm A in lowest part of Figure 1), considerable increases in abundance are found. Since nymphal stages do not reproduce, this increase can only be caused be introduction of new larvae (by adults, laying eggs), or it is an artefact of the sampling method. Given the time of the season, it is not very likely that new larvae are introduced. Upon request, the authors confirmed that the differences are caused by variability of the sampling method. They state that the current variation observed in the Cloeon abundances is rather normal for macrofauna endpoints in model ecosystem studies, indicating the variation caused by the sampling method reflects the normal technical limitations of such a study. The authors consider the response observed in the replicate systems of 3.8 µg a.s./L as an exception to the normal variation. Although not statistically significantly different from controls, they consider the decline in replicate C as a potential effect of imidacloprid and consequently did not designate this treatment level as a possible NOEC value (pers. comm. I. Roessink, Alterra). Given the time course of abundance (see figure above), it seems reasonable to assume that the oberved decline at 3.8 µg a.s./L was not caused by the 2nd application, but already started as a result of the 1st.

The variation which is caused by the sampling method might have influenced the results, which is a reason to consider the study less reliable. On the other hand, this variation is likely to be present in the control too, and is then accounted for in the MDD. The statement of the authors that the variation is similar to what is normally seen in mesocosm studies is accepted, but it should be noted that full mesocosm studies consider endpoints for multiple species. Moreover, emergence is usually included as an additional parameter to further underpin the sampling methods used here. Therefore, while accepting that the NOEC in this study is the $1.52~\mu g$ a.s./L treatment, the representativeness of this NOEC for other systems and other application periods remains to be seen.

Conclusion

The NOEC of 1.52 μg a.s./L nominal is considered for EQS-derivation.

Studies not further evaluated

Mesocosm study in rice paddies [93,94]. Mesocosms were dosed by transplanting nursery boxes with rice seedlings that were treated with imidacloprid in a granular formulation. Treatment was performed in 2010 and repeated in 2011, paddies were drained and left dry in between. Due to the way of dosing and emission, ecosystem characteristics, and agricultural practice, the study might be relevant for risk assessment of imidacloprid in rice cultivation.

However, the relevance for standard derivation of surface water in general is limited. Therefore, the studies are not further discussed here.

Mesocosm studies in rice paddies [95,96]. Mesocosms were dosed by transplanting nursery boxes with rice seedlings that were treated with imidacloprid in a granular formulation. Moreover, fish were introducted in the systems. Similar to the study above, the study design is not considered relevant for standard derivation for surface waters in general.

Study in which eggs of *Sympetrum infuscatum* were placed on the surface of a micro-paddy lysimeter (small lysimeters with soil and rice seedlings) that was treated with imidacloprid in a granular formulation [97]. The study might be relevant for risk assessment of imidacloprid in rice cultivation, but the dosing and exposure is not considered relevant for derivation of standards for surface water. The study is not further discussed here.

Study in which the fate of imidacloprid was assessed after application to a rice plot in Portugal [98]. Measured concentrations in paddy water were compared with modelled concentrations. Water from the plots was sampled and used for laboratory bioassays with *Daphnia magna*, *Heterocypris incongruens*, *Pseudokirchneriella subcapitata* and *Lemna minor* (only results presented, no further details given). Results were used for a risk assessment on the basis of SSDs with literature data.

Appendix 3. ETX output

Table A2.1 Acute SSD, all species

Input to	xicity data			Parameters of the r	normal distri	bution	
Data no	Toxicity data	Label	Species	Name	Value		Description
1	58876	bacteria	Vibrio fischerii	mean	2.130404		mean of the log toxicity values
2	79255	bacteria	Vibrio qinghaiensis sp.	s.d.	2.003784		sample standard deviation
3	389000	algae	Desmodesmus subspicatus	n	30		sample size
4	35.9	crustaceans	Americamysis bahia				
5	119	crustaceans	Asellus aquaticus	HC5 results			
6	2.07	crustaceans		Name	Value	log10(Value)	Description
7	832	crustaceans	Chydorus sphaericus	LL HC5	0.004812	-2.317669836	lower estimate of the HC5
8	1	crustaceans	Cypretta seuratti	HC5	0.06312	-1.199831935	median estimate of the HC5
9	10	crustaceans		UL HC5	0.422729	-0.37393808	upper estimate of the HC5
10	52455	crustaceans	Daphnia magna	sprHC5	87.84798	1.943731756	spread of the HC5 estimate
11	110	crustaceans					
12	55	crustaceans	Hyallella azteca	FA At HC5 results			
13	3	crustaceans	Ilyocypris dentifera	Name	Value		Description
14	1.94	crustaceans	Gammarus roeseli	FA lower	1.703		5% confidence limit of the FA at standardised median logHC5
15	1.77	insects	Caenis horaria	FA median	5		50% confidence limit of the FA at standardised median logHC5
16	284	insects	Chaoborus obscuripes	FA upper	11.785		95% confidence limit of the FA at standardised median logHC5
17	2.65	insects	Chironomus dilutus				
18	6.9	insects	Chironomus tentans	HC50 results			
19	1.02	insects	Cloeon dipterum	Name	Value	log10(Value)	Description
20	0.65	insects	Epeorus longimanus	LL HC50	32.26987	1.508797227	lower estimate of the HC50
21	1.79	insects	Limnephilidae	HC50	135.022	2.130404433	median estimate of the HC50
22	18.2	insects	Notonecta spp.	UL HC50	564.9521	2.752011639	upper estimate of the HC50
23	35.9	insects	Plea minutissima	sprHC50	17.50711	1.243214412	spread of the HC50 estimate
24	50.6	insects	Sialis lutaria				
25	8.1	insects	Simulium vittatum	FA At HC50 results			
26	227099	fish	Danio rerio	Name	Value		Description
27	237000	fish	Leuciscus idus melanotus	FA lower	38.19713		5% confidence limit of the FA at standardised median logHC50
28	211000	fish	Oncorhynchus mykiss	FA median	50		50% confidence limit of the FA at standardised median logHC50
29	161000	fish	Cyprinodon variegatus	FA upper	61.80287		95% confidence limit of the FA at standardised median logHC50
30	6.2	annelids	Lumbriculus variegatus				

Table A2.2 Acute SSD, insects

	cicity data Toxicity data 1.77 284 2.65 6.9	Label Ephemeroptera Diptera Diptera Diptera	Species Caenis horaria Chaoborus obscuripes Chironomus dilutus Chironomus tentans	Parameters of the non Name mean s.d. n	rmal distribution Value 0.860504955 0.81562814 11		Description mean of the log toxicity values sample standard deviation sample size
5 6 7	1.02 0.65 1.79	Ephemeroptera Ephemeroptera Trichoptera	Cloeon dipterum Epeorus longimanus Limnephilidae	HC5 results Name LL HC5	Value 0.03668739	log10(Value) -2.317669836	Description lower estimate of the HC5
8 9 10	18.2 35.9 50.6	Hemiptera Hemiptera Megaloptera	Notonecta spp. Plea minutissima Sialis lutaria	HC5 UL HC5 sprHC5	0.300199311 1.026167711 27.97058365	-1.199831935 -0.37393808 1.943731756	median estimate of the HC5 upper estimate of the HC5 spread of the HC5 estimate
11	8.1	Diptera Diptera	Simulium vittatum	FA At HC5 results Name FA lower FA median FA upper	Value 0.695 5 18.964		Description 5% confidence limit of the FA at standardised median logHC5 50% confidence limit of the FA at standardised median logHC5 95% confidence limit of the FA at standardised median logHC5
				HC50 results Name LL HC50 HC50 UL HC50 sprHC50	Value 2.598857425 7.252787526 20.24078982 7.788341763	log10(Value) 1.508797227 2.130404433 2.752011639 1.243214412	Description lower estimate of the HC50 median estimate of the HC50 upper estimate of the HC50 spread of the HC50 estimate
				FA At HC50 results Name FA lower FA median FA upper	Value 30.99676526 49.9999998 69.00323477		Description 5% confidence limit of the FA at standardised median logHC50 50% confidence limit of the FA at standardised median logHC50 95% confidence limit of the FA at standardised median logHC50

Table A2.3 Acute SSD, arthropods

Input to	xicity data			Parameters of the norm	al distribution		
Data no	Toxicity data	Label	Species	Name	Value		Description
1	35.9	Mysida	Americamysis bahia	mean	1.209034		mean of the log toxicity values
2	119	Isopoda	Asellus aquaticus	s.d.	1.170572		sample standard deviation
3	2.07	Cladocera	Ceriodaphnia dubia	n	22		sample size
4	832	Cladocera	Chydorus sphaericus				
5	1	Podocopida	Cypretta seuratti	HC5 results			
6	10	Podocopida	Cypridopsis vidua	Name	Value	log10(Value)	Description
7	52455	Cladocera	Daphnia magna	LL HC5	0.028801	-2.317669836	lower estimate of the HC5
8	110	Amphipoda	Gammarus pulex	HC5	0.180219	-1.199831935	median estimate of the HC5
9	55	Amphipoda	Hyallella azteca	UL HC5	0.648917	-0.37393808	upper estimate of the HC5
10	3	Podocopida	Ilyocypris dentifera	sprHC5	22.53081	1.943731756	spread of the HC5 estimate
11	1.94	Amphipoda	Gammarus roeseli				
12	1.77	Ephemeroptera	Caenis horaria	FA At HC5 results			
13	284	Diptera	Chaoborus obscuripes	Name	Value		Description
14	2.65	Diptera	Chironomus dilutus	FA lower	1.364		5% confidence limit of the FA at standardised median logHC5
15	6.9	Diptera	Chironomus tentans	FA median	5		50% confidence limit of the FA at standardised median logHC5
16	1.02	Ephemeroptera	Cloeon dipterum	FA upper	13.539		95% confidence limit of the FA at standardised median logHC5
17	0.65	Ephemeroptera	Epeorus longimanus				
18	1.79	Trichoptera	Limnephilidae	HC50 results			
19	18.2	Hemiptera	Notonecta spp.	Name	Value	log10(Value)	Description
20	35.9	Hemiptera	Plea minutissima	LL HC50	6.019965	1.508797227	lower estimate of the HC50
21	50.6	Megaloptera	Sialis lutaria	HC50	16.18208	2.130404433	median estimate of the HC50
22	8.1	Diptera	Simulium vittatum	UL HC50	43.49854	2.752011639	upper estimate of the HC50
				sprHC50	7.225712	1.243214412	spread of the HC50 estimate
				FA At HC50 results			
				Name	Value		Description
				FA lower	36.29128		5% confidence limit of the FA at standardised median logHC50
				FA median	50		50% confidence limit of the FA at standardised median logHC50
				FA upper	63.70872		95% confidence limit of the FA at standardised median logHC50

Table A2.4 Acute SSD,	arthropods	minus	Daphnia
Input toxicity data			

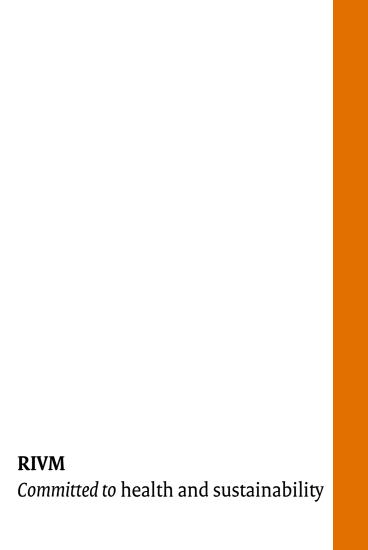

Table A	2.4 Acute S	ээр, агтпгорос	as minus Dapnnia				
Input toxicity data			Parameters of the normal distribution				
Data no	Toxicity data	Label	Species	Name	Value		Description
1	35.9	Mysida	Americamysis bahia	mean	1.041856		mean of the log toxicity values
2	119	Isopoda	Asellus aquaticus	s.d.	0.890582		sample standard deviation
3	2.07	Cladocera	Ceriodaphnia dubia	n	21		sample size
4	832	Cladocera	Chydorus sphaericus				
5	1	Podocopida	Cypretta seuratti	HC5 results			
6	10	Podocopida	Cypridopsis vidua	Name	Value	log10(Value)	Description
7	110	Amphipoda	Gammarus pulex	LL HC5	0.085096	-2.317669836	lower estimate of the HC5
8	55	Amphipoda	Hyallella azteca	HC5	0.358708	-1.199831935	median estimate of the HC5
9	3	Podocopida	Ilyocypris dentifera	UL HC5	0.970928	-0.37393808	upper estimate of the HC5
10	1.94	Amphipoda	Gammarus roeseli	sprHC5	11.40976	1.943731756	spread of the HC5 estimate
11	1.77	Ephemeroptera	Caenis horaria				
12	284	Diptera	Chaoborus obscuripes	FA At HC5 results			
13	2.65	Diptera	Chironomus dilutus	Name	Value		Description
14	6.9	Diptera	Chironomus tentans	FA lower	1.321		5% confidence limit of the FA at standardised median logHC5
15	1.02	Ephemeroptera	Cloeon dipterum	FA median	5		50% confidence limit of the FA at standardised median logHC5
16	0.65	Ephemeroptera	Epeorus longimanus	FA upper	13.759		95% confidence limit of the FA at standardised median logHC5
17	1.79	Trichoptera	Limnephilidae				
18	18.2	Hemiptera	Notonecta spp.	HC50 results			
19	35.9	Hemiptera	Plea minutissima	Name	Value	log10(Value)	Description
20	50.6	Megaloptera	Sialis lutaria	LL HC50	5.089468	1.508797227	lower estimate of the HC50
21	8.1	Diptera	Simulium vittatum	HC50	11.01173	2.130404433	median estimate of the HC50
				UL HC50	23.82533	2.752011639	upper estimate of the HC50
				sprHC50	4.6813	1.243214412	spread of the HC50 estimate
				FA At HC50 results			
				Name	Value		Description
				FA lower	35.98214		5% confidence limit of the FA at standardised median logHC50
				FA median	50		50% confidence limit of the FA at standardised median logHC50
				FA upper	64.01786		95% confidence limit of the FA at standardised median logHC50

Table A2.5	Chronic SSD,	arthropods
------------	--------------	------------

		SSD, artificp	,0 u 3						
Input toxicity data		Parameters of the normal distribution							
Data no	Toxicity data	Label	Species	Name	Value		Description		
1	1.35	Isopoda	Asellus aquaticus	mean	0.287343		mean of the log toxicity values		
2	1768	Cladocera	Daphnia magna	s.d.	1.305604		sample standard deviation		
3	2.95	Amphipoda	Gammarus pulex	n	12		sample size		
4	0.47	Amphipoda	Hyallella azteca						
5	0.024	Ephemeroptera	Caenis horaria	HC5 results					
6	1.99	Diptera	Chaoborus obscuripes	Name	Value	log10(Value)	Description		
7	0.42	Diptera	Chironomus tentans	LL HC5	0.000519	-2.317669836	lower estimate of the HC5		
8	0.033	Ephemeroptera	Cloeon dipterum	HC5	0.012012	-1.199831935	median estimate of the HC5		
9	2.03	Hemiptera	Plea minutissima	UL HC5	0.079466	-0.37393808	upper estimate of the HC5		
10	14.5	Plecoptera	Pteronarcys dorsata	sprHC5	153.2559	1.943731756	spread of the HC5 estimate		
11	1.28	Megaloptera	Sialis lutaria	•			'		
12	34	Diptera	Tipula sp.	FA At HC5 results					
		•		Name	Value		Description		
				FA lower	0.774		5% confidence limit of the FA at standardised median logHC5		
				FA median	5		50% confidence limit of the FA at standardised median logHC5		
				FA upper	18.064		95% confidence limit of the FA at standardised median logHC5		
				HC50 results					
				Name	Value	log10(Value)	Description		
				LL HC50	0.407833	1.508797227	lower estimate of the HC50		
				HC50	1.937952	2.130404433	median estimate of the HC50		
				UL HC50	9.208812	2.752011639	upper estimate of the HC50		
				sprHC50	22.57985	1.243214412	spread of the HC50 estimate		
				56655	22.07,500		oprodu or the riodo commute		
				FA At HC50 results					
				Name	Value		Description		
				FA lower	31.74547		5% confidence limit of the FA at standardised median logHC50		
				FA median	50		50% confidence limit of the FA at standardised median logHC50		
				FA upper	68.25453		95% confidence limit of the FA at standardised median logHC50		
				4774.	00.20 100		22 /2 commence mine of the first standard document regimes		

Table A2.6 Chronic SSD, arthropods minus Daphnia

			SSD, altill Op	ious minus Dapinin				
Input toxicity data			Parameters of the normal distribution					
	Data no	Toxicity data	Label	Species	Name	Value		Description
	1	1.35	Isopoda	Asellus aquaticus	mean	0.018239		mean of the log toxicity values
	2	2.95	Amphipoda	Gammarus pulex	s.d.	0.958728		sample standard deviation
	3	0.47	Amphipoda	Hyallella azteca	n	11		sample size
	4	0.024	P	Caenis horaria				
	5	1.99	Diptera	Chaoborus obscuripes	HC5 results			
	6	0.42	Diptera	Chironomus tentans	Name	Value	log10(Value)	Description
	7	0.033		Cloeon dipterum	LL HC5	0.002087	-2.317669836	lower estimate of the HC5
	8	2.03	Hemiptera	Plea minutissima	HC5	0.024688	-1.199831935	median estimate of the HC5
	9	14.5	Plecoptera	Pteronarcys dorsata	UL HC5	0.1047	-0.37393808	upper estimate of the HC5
	10	1.28	Megaloptera	Sialis lutaria	sprHC5	50.17904	1.943731756	spread of the HC5 estimate
	11	34	Diptera	Tipula sp.				
					FA At HC5 results			
					Name	Value		Description
					FA lower	0.695		5% confidence limit of the FA at standardised median logHC5
					FA median	5		50% confidence limit of the FA at standardised median logHC5
					FA upper	18.964		95% confidence limit of the FA at standardised median logHC5
					HC50 results			
					Name	Value	log10(Value)	Description
					LL HC50	0.312116	1.508797227	lower estimate of the HC50
					HC50	1.042892	2.130404433	median estimate of the HC50
					UL HC50	3.484681	2.752011639	upper estimate of the HC50
					sprHC50	11.1647	1.243214412	spread of the HC50 estimate
					FA At HC50 results			
					Name	Value		Description
					FA lower FA median	30.99677 50		5% confidence limit of the FA at standardised median logHC50 50% confidence limit of the FA at standardised median logHC50
						69.00323		
					FA upper	05.00323		95% confidence limit of the FA at standardised median logHC50

