Central nicotinic cholinergic systems: A role in the cognitive dysfunction in Attention-Deficit/Hyperactivity Disorder?

Alexandra S. Potter, Paul A. Newhouse, David J. Bucci

Abstract

Theories of the neurobiological basis of Attention-Deficit/Hyperactivity Disorder (ADHD) have largely focused on dysregulation of central dopaminergic function. However, other neurotransmitter systems may be implicated in specific cognitive deficits in ADHD. Interest in the potential involvement of nicotinic cholinergic systems in ADHD has arisen in part from the observation that adolescents and adults with ADHD smoke cigarettes at significantly higher rates than people without this disorder. In addition, several studies report that nicotine alleviates ADHD symptoms, and recent neuro-genetics studies indicate that cholinergic systems may be altered in persons with ADHD. In this review, we describe the evidence for a role of central nicotinic cholinergic systems in cognitive deficits in ADHD. We also propose mechanisms by which alterations in cholinergic function may contribute directly and/or indirectly to these deficits. Finally, we identify specific paradigms and models to guide future investigations into the specific involvement of nicotinic cholinergic systems in ADHD, possibly leading to the development of more effective pharmacotherapies for ADHD.

Keywords: ADHD; Cholinergic; Acetylcholine; Nicotine; Smoking; Substance abuse

Contents

1. Introduction ... 202
2. Neurochemistry of ADHD .. 202
3. Nicotine and ADHD ... 202
 3.1. Cigarette smoking and ADHD .. 202
 3.2. Effects of nicotine on overt behavioral symptoms of ADHD .. 203
4. Involvement of cholinergic systems in the cognitive impairments in ADHD .. 203
 4.1. Behavioral inhibition ... 203
 4.2. Delay aversion ... 205
 4.3. Sustained attention .. 205
 4.4. Working memory ... 205
5. Neural mechanisms mediating the effects of nicotine on cognitive impairment in ADHD .. 205
 5.1. Central cholinergic systems ... 206
 5.2. Cholinergic–dopaminergic interactions 206
 5.3. Cortical–subcortical interactions 207

* Corresponding author. Tel.: +1 802 847 6955; fax: +1 802 847 7889.
E-mail address: Alexandra.Potter@uvm.edu (A.S. Potter).

© 2006 Published by Elsevier B.V.

0166-4328/$ – see front matter © 2006 Published by Elsevier B.V.
1. Introduction

Attention-Deficit/Hyperactivity Disorder (ADHD) is the most common childhood psychological disorder, affecting approximately 3–5% of children and persisting into adolescence and adulthood for an estimated 60–80% of people who are affected [1]. Research on the neurobiological basis of ADHD has traditionally focused on dysregulation of central dopaminergic function, and psychostimulant treatment has been shown to have positive effects on ADHD symptoms [55,96]. However, ADHD affects approximately 3–5% of children and persisting into adolescence and adulthood for an estimated 60–80% of people who are affected [1]. Research on the neurobiological basis of ADHD has traditionally focused on dysregulation of central dopaminergic function, and psychostimulant treatment has been shown to have positive effects on ADHD symptoms [55,96]. However, ADHD has been proposed [28] that non-catecholaminergic neurotransmitter systems are involved in this disorder. Indeed, it has recently been proposed [28] that non-catecholaminergic neurotransmitter systems may be involved in the cognitive symptoms of ADHD, but there are few reports that go on to identify or address the specific involvement of other transmitter systems.

Here we present evidence for a specific role of central nicotinic cholinergic systems in the cognitive deficits of ADHD. After first reviewing current theories regarding the neurochemistry of ADHD, we describe the precipitous use of use nicotine by persons with ADHD and the effects of nicotine on the behavioral manifestations of the disorder. We then present evidence to support the hypothesis that cholinergic alterations may contribute to several specific cognitive deficits in ADHD including impairments in behavioral inhibition, delay aversion, sustained attention, and working memory. These cognitive deficits are currently thought to give rise to the overt behavioral symptoms (i.e., hyperactivity, inattentiveness, impulsivity) of ADHD as measured using behavior checklists and observations (Barkley [6,7], Sonuga-Barke et al. [99]). We thus further the notion that persons with ADHD may use nicotine to self-medicate and alleviate cognitive deficits that underlie ADHD symptoms by describing how nicotine may exert its beneficial effects. Finally we describe the neural mechanisms that may mediate the effects of nicotine on cognitive impairment in ADHD, as well as therapeutic implications.

2. Neurochemistry of ADHD

Research on the neurochemistry of ADHD indicates that there is not a single neurotransmitter abnormality that is responsible for the symptoms of ADHD [123]. Dopamine and norepinephrine have been the most well studied neurotransmitters, largely due to the positive therapeutic effects of psychostimulants on ADHD symptoms. It has been suggested that the balance between these two systems may be altered and result in the symptoms of ADHD [97]. Recent neuro-imaging studies have revealed anatomical changes in dopamine-rich brain regions such as the globus pallidus and frontal cortex in children with ADHD [19]. Subjects with ADHD have also been shown to have reduced frontal and striatal activity during relevant cognitive tasks [25,27,43], which may be related to reduced dopaminergic tone. Other lines of evidence indicate that reduced noradrenergic activity, altered dopamine re-uptake, and changes in the dopamine D4 receptor are often observed in persons with ADHD [22,44].

Current treatments for ADHD consist mainly of psychostimulants (e.g. methylphenidate), which are thought to exert their effects by increasing both dopaminergic and noradrenergic neurotransmission [63]. Stimulant medications have been well demonstrated to significantly reduce ADHD symptoms measured by both parent and teacher ratings. These effects include reductions on ratings of activity levels, hyperactivity/impulsivity and inattention ([101–103], MTA research group). In addition, psychostimulant treatment has been shown to improve “non-ADHD” symptoms such as teacher reported social skills [68], and aggressive behavior in the school setting [103] contributing to improvements in classroom performance [68,101,102].

The exact mechanisms by which psychostimulants produce improvements in ADHD remain unclear. It is also not entirely certain which dopaminergic system(s) are involved or how they regulate behavior. Moreover, psychostimulants have greater effects on overt behavioral features of the disorder as measured through observer-rated behavior checklists than on cognitive domains measured in the laboratory [101]. The reduction of motor activity associated with administration of psychostimulants also follows a different dose–response curve than the effects on cognition (i.e., sustained attention) [76,97]. Furthermore, studies in normal volunteers indicate that psychostimulants improve performance on a broad array of tasks and that these improvements are not specific to individuals with ADHD [84].

These findings have prompted the proposition that other, non-catecholaminergic, neurotransmitter systems may be involved in the cognitive symptoms of ADHD [27]. A few studies have begun to address specific nicotinic cholinergic abnormalities in ADHD. In addition, converging evidence regarding the propensity for persons with ADHD to use and abuse nicotine-containing products, along with the evidence that nicotine alleviates symptoms and specific cognitive deficits in ADHD, suggests that central nicotinic cholinergic systems may have an important role in the cognitive impairments observed in ADHD.

3. Nicotine and ADHD

3.1. Cigarette smoking and ADHD

A major impetus for improving the understanding of the basis of ADHD involves the precipitous use and abuse of nicotine by
persons with ADHD. Adults and adolescents who are diagnosed with ADHD smoke at significantly higher rates than comparable people in a community sample [75]. In addition, adult males with ADHD also have lower quit ratios (percentage of ever-smokers who are ex-smokers) than the general population (23% versus 51.6%). Pomerleau et al. [75] identified a relationship between current smoking status and retrospective reports of ADHD symptoms, with current smokers recalling a greater number and greater severity of ADHD symptoms in childhood. A prospective study of tobacco smoking [45] found that by age 17, 46% of adolescents with ADHD were smoking cigarettes daily compared with 24% of age-mate controls. This finding continued into adulthood where 35% of adult subjects with ADHD were smokers as compared to 16% of age-mate controls. Likewise, a recent longitudinal study of predictors of adolescent smoking found a diagnosis of ADHD to be associated with earlier first use of cigarettes, earlier progression to daily smoking, and earlier use of illicit drugs [56].

ADHD has high rates of comorbidity with Conduct Disorder (CD), Oppositional Defiant Disorder, anxiety disorders, and depression [2,3,12,13,104], making it difficult to discern the true relationship between ADHD and substance abuse. However, Disney et al. [24] reported that while ADHD itself has little effect on most substance use outcomes independent of the effects of CD, nicotine dependence is an exception. Thus, ADHD may have a direction relationship with nicotine dependence. This notion is supported by Milberger et al. [66] who found a prospective relationship between ADHD and cigarette smoking in boys after controlling for the effects of CD. In addition, Molina and Pelham [67] and Burke et al. [17] both found that child inattention symptoms prospectively predicted substance use outcomes when CD was controlled for. Together, these findings indicate that persons with ADHD may be particularly susceptible to nicotine abuse and support the notion that nicotine may be used to alleviate specific symptoms of ADHD [51,116].

3.2. Effects of nicotine on overt behavioral symptoms of ADHD

Recent investigations of nicotine agents in ADHD have shown promising symptomatic improvement in both adolescents and adults with ADHD [53,77,78,95,116,118]. Levin et al. [53] examined the acute effects of transdermal nicotine in adults with ADHD (both smokers and non-smokers) and found significant improvements in self-rated vigor, concentration, and observer-rated illness severity (CGI) in both subject groups. In addition, there were improvements on speed of responding for both the smokers and non-smokers and a reduction in variability of reaction time for the smokers [53]. In a second study [49], the effects of chronic (4 weeks) nicotine administration were compared to treatment with methylphenidate, placebo, and a combination of nicotine and methylphenidate in adults with ADHD. Nicotine significantly reduced clinician ratings of severity of symptoms and decreased self-reported symptoms of depression as well as variability of reaction times on a continuous performance task.

Other studies have examined a novel cholinergic channel activator (nicotinic agonist) ABT-418 in adults with ADHD using a cross-over design with each subject receiving 2 double-blind 3-week treatment periods with placebo and ABT-418 [116]. Significant improvements in subjective ratings of attentiveness and observer-rated illness severity on a clinical global impressions scale were reported following treatment with ABT-418. A newer, more selective agonist acting at the α4β2 nicotinic receptor subtype has also recently been tested in adults with ADHD [118]. ABT-089 was administered to adults for 2 weeks in a multi-dose randomized, double-blind, placebo-controlled trial and was superior to placebo based on improvements in symptom scores, ADHD index hyperactive/impulsive ratings, and clinical global impression. Studies such as these provide evidence that stimulation of nicotinic cholinergic systems can alleviate some of the overt behavioral symptoms of ADHD as measured through self-report and observer ratings. However, they do not specifically address the cognitive domains through which nicotine may affect persons with ADHD.

4. Involvement of cholinergic systems in the cognitive impairments in ADHD

There are several means by which stimulation of central cholinergic systems may produce beneficial effects on the cognitive deficits associated with ADHD. For example, it is now widely accepted that processes such as sustained attention and working memory are regulated by central cholinergic systems [87,88]. Indeed, ADHD has historically been understood in terms of the overt clinical symptoms of inattention and hyperactivity as defined by the DSM and measured on parent and teacher-completed rating scales of behavior. More recently, many ADHD theorists have highlighted the need for improved and testable theoretical frameworks for elucidating the biological abnormalities associated with this disorder [6,7,72,81]. This has lead to an increased focus on the cognitive deficits in ADHD using methodology and theoretical approaches from cognitive psychology.

It is now believed that the attention problems in ADHD are not manifest in information processing or perception per se [90,110]; instead, the current literature on the neuro-cognitive profile of ADHD emphasizes impairments in laboratory tasks of behavioral inhibition, delay aversion, sustained attention, and executive function [73,93]. In particular, laboratory measures of behavioral inhibition (e.g., Stop Signal Task) and delay aversion (e.g., the 2-Choice Task) have good discriminant validity separately and excellent discriminant validity together in distinguishing persons with ADHD from normal control subjects [98,100]. The involvement of cholinergic systems in behavioral inhibition and delay aversion are quite understudied, and only recently have the effects of nicotinic cholinergic manipulations been examined in these domains.

4.1. Behavioral inhibition

Deficits in behavioral inhibition are among the most well documented cognitive deficits in ADHD. A recent meta-analysis
found that the strongest and most consistent group differences between ADHD and control subjects were on the Stop Signal Task [119]. The Stop Signal Task is a measure of behavioral inhibition that is not influenced by reward seeking [56] and involves two concurrent tasks for subjects, a “go task” and a “stop task,” from which a stop signal reaction time (SSRT) can be calculated. The SSRT provides an estimate of the speed of inhibiting a response, thus reflecting activation of inhibitory systems. Neuroimaging studies reveal that subjects with ADHD have reduced frontal and striatal activation during performance of inhibition tasks [25,27,43] and several studies provide evidence that SSRT is improved by acute administration of psychostimulants [5,15]. However, psychostimulants also have a non-specific effect on reaction times (faster) in all phases of the task [11,104,105]. Thus, it is difficult to interpret the effects of psychostimulants on inhibitory processes when more global processes such as reaction time are enhanced.

Our laboratory has recently examined the effects of acute nicotine administration on behavioral inhibition in both non-smoking adolescents and young adults with ADHD [77,78]. In one study, adolescents were acutely administered either nicotine or methylphenidate (subjects’ usual morning dose). Nicotine (as well as methylphenidate) improved behavioral inhibition as reflected in significantly faster SSRTs (Fig. 1). Data from a second study extended the finding of a positive effect of nicotine on behavioral inhibition to young adults with ADHD (Fig. 1). Importantly, the effects of nicotine in the Stop Signal Task were not due to global improvements in performance as there were no significant differences found on go-reaction time or accuracy (which was above 90% for all doses on all blocks) in either study (Fig. 2).

An additional study in humans examined the effect of nicotine on inhibition using the Stroop Task, which measures cognitive interference control. Subjects must inhibit a faster cognitive process (word reading) to respond with a slower cognitive process (color naming). The primary outcome variable on the Stroop Task is the Stroop Effect, a measurement of the cost of inhibiting the automatic process (word reading) and responding with a slower process (color naming). Studies have found that children and adolescents with ADHD have a larger Stroop Effect compared to normal controls [57,59,74]. Nicotine, but not methylphenidate, produced an improvement on the Stroop Task in adolescents with ADHD, reflecting improvement in inhibitory function (Fig. 3).

We have recently examined the effects of nicotine on conditioned inhibition in rats using a serial feature negative discrimination task [60]. In this paradigm, a stimulus Y is followed by food reward on some trials, but on other trials Y is preceded by another stimulus, X. On those trials food is not delivered after presentation of Y. Although there are limitations in directly comparing this task to the Stop Signal Task in humans, it is noteworthy that inhibition was enhanced in rats treated with nicotine, as evidenced by a greater discrimination between the two trial types. Notably, nicotine decreased responding on the
non-reinforced trials but did not affect responding on reinforced trials, as observed with humans in the Stop Signal Task.

4.2. Delay aversion

In addition to behavioral inhibition, another cognitive process that is believed to contribute to overt behavioral symptoms in ADHD is delay aversion. The delay aversion hypothesis characterizes impulsive behavior as the expression of a motivational state in which the person makes a rational choice to avoid delay [99]. This hypothesis has been experimentally tested using the Choice Delay Task in which the subject repeatedly chooses between a smaller-sooner and a larger-later reward. The Choice Delay Task is administered with a fixed number of trials so that smaller-sooner choices are associated with a shorter testing session but less overall reward. Children with ADHD exhibit significantly fewer larger-later reward choices than non-ADHD children [98,99].

We have recently conducted a small scale study examining the effects of acute nicotine administration on delay aversion in young adults with ADHD. Nicotine was administered transdermally (7 mg patch) for 45 min and delay aversion was measured with the Choice Delay Task. There was evidence of an increase in the number of delayed choices made during the nicotine condition (Fig. 4), indicative in a change in the ability of persons with ADHD to refrain from responding and choose to wait for larger rewards ($p < 0.08$).

4.3. Sustained attention

Deficits in sustained attention are among the strongest findings in studies of the cognitive deficits in ADHD [119], although they may be secondary to deficits in inhibition [72]. Regardless, it is possible that persons with ADHD use nicotine to improve sustained attention. Nicotine has well described effects on improving sustained attention in humans as assessed in the Continuous Performance Task. These include positive findings in normal young adults as well as non-abstinent smokers [54]. Studies of the effects of nicotine on persons with ADHD have found that nicotine improves accuracy (d') on this task [95]. Other studies have revealed nicotine-induced reductions in errors of omission and reductions in the variability of response times [53] demonstrating a beneficial effect of nicotine on sustained attention in patients with ADHD.

In laboratory animals, sustained attention has been examined using the 5-choice serial reaction-time (5-CSR) task. Nicotine administration improves performance on this task generally only when the baseline performance is deficient, i.e., in studies using brain lesioned rats or rats that have existing deficits on this task [37,38,69]. In addition, recent studies in mice using the 5-choice serial reaction time task found that nicotine improved sustained attention and that α7 knockout mice had higher errors of omission on a modified version of the task [121,122]. These data are consistent with the notion that nicotinic acetylcholine receptors play a significant role in sustained attention and suggest an additional mechanism by which persons with ADHD may use nicotine to alleviate cognitive dysfunction.

4.4. Working memory

Cholinergic systems are also thought to play a key role in working memory [35,71], another aspect of cognitive dysfunction associated with ADHD. Nicotine has been shown to enhance working memory in deprived healthy smokers [31] and in various studies with laboratory animals. For example, both α4β2 and α7 nicotinic agonists improve working memory and nicotinic antagonists disrupt working memory [49]. Hippocampal infusion of the centrally-acting nicotinic antagonists produces spatial working memory deficits in the radial arm maze [29]. In contrast, nicotine does not appear to have an effect on reference memory [50,51,54].

To our knowledge, there has yet to be a comprehensive investigation of the effects of nicotine on working memory in persons with ADHD. Nonetheless, it is noteworthy that the working memory deficit in ADHD is thought by some researchers to reflect an inability to suppress irrelevant information [23]. Studies by Buccafusco and others suggest that nicotinic receptor stimulation may improve working memory in rats and non-human primates by reducing distractibility [79,80,107]. For example, nicotine as well as the nicotinic agonists ABT-418 and ABT-089 improved performance in a delayed-recall task by increasing accuracy particularly when a distracter was present [79]. Thus, nicotinic stimulation may improve working memory by enhancing the ability to inhibit irrelevant (distracting) information in ADHD.

5. Neural mechanisms mediating the effects of nicotine on cognitive impairment in ADHD

There are several neural mechanisms by which stimulation of central cholinergic systems may affect cognition in persons with ADHD. Administration of nicotine may produce a “direct” effect by enhancing cholinergic-mediated cognitive functions per se. An alternate, “indirect” mechanism by which cholinergic manipulations may influence cognitive performance in persons with ADHD is through cholinergic modulation of dopaminergic systems and dopamine-mediated functions.
5.1. Central cholinergic systems

The beneficial effects of nicotine on cognition in ADHD could arise from direct effects on cognitive functions known to be mediated by central cholinergic systems such as the basal forebrain cholinergic system (BFCS). The BFCS is composed of a continuum of several different nuclei including the medial septum (MS), the vertical and horizontal limbs of the nucleus of the diagonal band of Broca (VDB/HDB), globus pallidus (GP), ventral pallidum (VP), magnocellular preoptic area (MgPO), and substantia innominata (SI)/nucleus basalis magnocellularis (nBM; referred to in primates as the nucleus basalis of Meynert). Magnocellular neurons located in these nuclei provide the major cholinergic innervation of the cortex and hippocampus [114] as shown in Fig. 5. The BFCS has often been divided into two main projection pathways, a medial and a lateral pathway [46,58,85,86]. The vast majority of neurons that constitute the medial pathway are located more rostrally (MS, VDB), and primarily innervate the hippocampus, and also the cingulate and retrosplenial cortex. In contrast, most neurons comprising the lateral pathway are located in the caudal extent of the basal forebrain (SI/nBM, GP, VP), and provide widespread innervation of the neocortical mantle (see Fig. 5).

These components of the BFCS are critically involved in various aspects of attentional function, including sustained attention, selective attention, and the ability to increase and decrease attention to stimuli [8,9,16,18,20,39,62,88,89]. Indeed, it has been suggested that dysregulation of cholinergic systems may contribute to attentional deficits in some forms of ADHD [10]. The cholinergic system supports the detection of external signals (bottom-up information processing) as well as supporting processing of task relevant and knowledge based detection processes (top-down information processing; [89]). Recruitment of the system appears to increase with increasing cognitive demands and may reflect effortful processing. Impairments in cholinergic system functioning are likely to result in impairments on tasks that have high attentional demands such as tasks that are difficult, require task or context switching, or require searching for targets [26].

5.2. Cholinergic–dopaminergic interactions

Stimulation of cholinergic receptors located on dopaminergic neurons results in increased activation of central dopaminergic systems and may lead to enhancement of dopaminergic-mediated functions [21,83,120]. There are several major dopaminergic systems in the brain that have been implicated in the pathophysiology of ADHD. These systems originate in the substantia nigra (SN) or ventral tegmental area (VTA; [106]). The mesostriatal dopaminergic system originates in the SN and projects primarily to the neostriatum, specifically the caudate and putamen. The mesolimbic system originates in the VTA, providing dopaminergic innervation of the limbic system (e.g., amygdala, nucleus accumbens, and hippocampus) as well as frontal cortical areas. In turn, the VTA receives feedback connections from frontal cortex and nucleus accumbens, and serves to regulate reward and certain motivational processes [110]. Indeed, behavioral inhibition is thought to be associated with the mesocortical branch of the dopamine system projecting into the pre-frontal cortex and that delay aversion is related to motivational processes involving the mesolimbic dopamine system [92].

There are a variety of mechanisms and anatomical loci where dopaminergic and cholinergic systems may directly interact, possibly mediating the positive effects of nicotine on individuals with ADHD (Fig. 5). Comprehensive anatomical studies have identified approximately eight different cholinergic projection systems [65,84,113]. At least three of these cholinergic systems, originating in various brainstem nuclei (e.g., pedunculopontine (PPT) and laterodorsal tegmental (LTN) nuclei), provide direct input to dopaminergic cell groups in the SN and VTA [113]. Recent studies confirm a direct synaptic connection between cholinergic terminals and dopaminergic cell bodies in the VTA [34]. Indeed, nicotine has been shown to increase the release of dopamine in both striatal and mesolimbic dopaminergic pathways [21,83,120]; Levin et al. [52] found that activation of nicotinic receptors and dopamine receptors is additive, and possibly synergistic. Conversely, the nicotinic blocker mecamylamine decreases dopamine activity in mesolimbic and nigrostriatal systems [52]. Furthermore, cholinergic neurons in the LDT have been found to modulate dopaminergic activity in the nucleus accumbens [30], and cholinergic stimulation of the VTA activates mesolimbic dopamine systems [36]. Nicotinic acetylcholine receptor activation has recently been shown to increase the expression of dopaminergic biosynthetic enzymes [94].

In addition, there is evidence of a dynamic functional interaction between dopaminergic and cholinergic systems in ADHD. In a study showing that ADHD was associated with elevations in
the dopamine transporter (DAT), further analyses revealed that a subset of subjects smoked cigarettes and that this group actually exhibited significantly lower levels of DAT [43]. These data support the notion that nicotine use may act directly on DAT [43], providing a mechanisms by which nicotine may improve functions regulated by dopaminergic systems. Other data indicate that interactions between brainstem cholinergic systems and dopaminergic pathways may have a significant role in reward mechanisms. Indeed, several recent behavioral studies provide strong support for that notion [40,64].

5.3. Cortical–subcortical interactions

Recent studies have suggested that there are a series of control loops or pathways involving cortical and subcortical structures that alter the activity of the output nuclei of the basal ganglia. One particularly important pathway is the so-called “hyperdirect pathway” which involves the subthalamic nucleus, apparently under glutamatergic and GABAergic control, in modulating the output of basal ganglia output structures such as the globus pallidus [70]. Recently, functional imaging studies have demonstrated the importance of the subthalamic nucleus and the hyperdirect pathway and suggest that they play a critical role in the “stop” process in the Stop Signal Task [4]. Since the subthalamic nucleus contains α7-nicotinic cholinergic receptors and perhaps other nicotinic receptors [82,91], nicotine may improve performance on the Stop Signal Task through the subthalamic nucleus, improving its ability to modulate or interrupt “go” signals when a stop signal is generated cortically. Conversely, individuals with ADHD may either have deficits in this pathway or within the cortical impulse generators themselves that produce impairments in this task and in other types of impairments of control or impulsive responding.

6. Therapeutic implications

A more thorough understanding of cholinergic contributions to the cognitive deficits in ADHD may lead to new and improved therapies for this disorder. Indeed, cognitive deficits are currently thought to give rise to the overt behavioral symptoms of ADHD (Barkley [6,7], Sonuga-Barke et al. [99]) thus alleviating cognitive dysfunction may reduce ADHD behavioral symptoms. Although psychostimulants are effective for many patients with ADHD, their use has several limitations. For example, only 70% of patients will achieve a therapeutic response to a psychostimulant [14], and the effects of long term of stimulant treatment during child development are only now being explored with some results suggestive of long-lasting negative effects [112]. One recent study indicates that stimulants increase smoking behavior by increasing the relative reinforcing effects of cigarette smoking [108]. This suggests that stimulant medication, while exhibiting clinical efficacy may actually increase the risk of these individuals becoming regular smokers over and above the risks associated with the disorder itself.

The prospect of developing specific cholinergic therapeutic approaches in ADHD has been a subject of increasing interest over the last several years. With the advent of well tolerated, orally available cholinergic agents, the potential for utilizing cholinergic treatment as either a primary or secondary approach to treating ADHD has become a more realistic possibility. Currently available agents include non-specific oral anti-cholinesterases, including donepezil, galantamine, and rivastigmine. Both donepezil and galantamine have both been reported to be helpful as an adjunctive treatment in childhood ADHD [47,117] with positive clinical benefits reported. Reportedly, galantamine significantly improved both clinical ratings and measures of executive function while donepezil produced smaller, non-significant improvements. It is notable that a major difference between these two agents is that galantamine, in addition to its anticholinesterase effects, which are relatively weak, also has positive allosteric effects at α4β2 nicotinic receptors.

Despite these positive preliminary findings, there are significant obstacles to the widespread or long-term use of anticholinesterase medication in ADHD, particularly in childhood. The effect of long-term administration of centrally and peripherally active anti-cholinesterase agents to children, adolescents, and young adults is unknown. For example, the ovary is known to contain muscarinic receptors which may have a variety of regulatory roles on ovarian function [33,61], and concerns could be raised about whether alterations to ovarian function could be produced. Furthermore, oral cholinesterase inhibitors have a relatively narrow therapeutic index even in adults and therefore the tolerability of these agents, particularly in children, is open to some question.

Potentially more practical may be the development of novel nicotinic agonists for ADHD either as an adjunctive treatment or a primary treatment. While nicotine itself has a very narrow therapeutic index, novel nicotinic agonists have been developed that appear more likely to be therapeutically acceptable to children and adolescents (e.g., ABT-089). ABT-089 was superior to placebo based on improvements in symptom scores, ADHD index hyperactive/impulsive ratings, and clinical global impression. While ABT-089 and similar compounds target the α4β2 nicotinic receptor, there is also interest in drug development targeting the α7 nicotinic receptor subtype. Abnormalities in the expression of this receptor have been identified as being important in attentional impairments in schizophrenia [32,48].

If nicotinic agents alleviate cognitive impairment in ADHD and produce relevant improvements in the overt symptoms of ADHD, then the clinical role of such agents will need to be determined. It is unclear whether these agents will have the magnitude of effects necessary to adequately treat the clinical symptomatology of ADHD. Whether they are used adjunctively or as a primary therapy, nicotinic stimulation may have the side benefit of lowering the risk of initiation of cigarette smoking by adolescents and young adults with ADHD. This alone may be a strong argument to consider their use, especially as there is evidence that stimulant use may actually increase the reinforcing aspects of cigarette smoking [108,115].

7. Conclusions

The literature described in this review provides important evidence for the potential involvement of central nicotinic cholin-
ergetic systems in cognitive dysfunction in ADHD. Persons with ADHD use and abuse nicotine products at a much higher rate than the general public, suggesting that persons may self-medicate with nicotine. Moreover, clinical trials of drugs that stimulate nicotinic receptors have demonstrated clinical benefits in ADHD [51,116,118]. Additional studies indicate that nicotine treatment has specific effects on the cognitive domains that are currently proposed to be central to the disorder, including behavioral inhibition, delay aversion, sustained attention, and working memory [77,78]. In addition, recent neuro-genetics studies provide evidence that cholinergic function may be altered in persons with ADHD via alterations in specific nicotinic cholinergic receptor subtypes [41,42,109].

Nevertheless, the role of cholinergic systems in the cognitive deficits associated ADHD is greatly underappreciated as well as understudied. Despite several advances, it still remains unclear whether cholinergic dysfunction is part of the etiology of ADHD. It is also unclear whether nicotine enhances cholinergic-mediated cognitive functions and/or attenuates symptoms indirectly by stimulating other dysfunctional neurotransmitter systems (e.g., dopamine). Likewise, it is unknown if the effects of nicotine on cognition in ADHD are mediated by cholinergic systems per se, or cholinergic modulation of dopaminergic function. Future studies in laboratory animals could be carried out using combined biochemical lesion and pharmacological approaches as well as receptor knockout models to address some of these questions. Complementary studies in humans would be useful to examine the effects of subtype-specific cholinergic receptor antagonists on the core cognitive functions currently thought to underlie ADHD, such as behavioral inhibition and delay aversion. Together, these avenues of research may lead to new therapies for ADHD, as well as a better understanding of the etiology of the disorder.

Acknowledgements

The authors are supported by NIMH/NIDA grant MH069670 and thank Dr. Joel Nigg for valuable comments on previous versions of the manuscript.

References

