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Seed dressing, i.e., the treatment of crop seeds with insecticides and/or fungicides,

aiming to protect seeds from pests and diseases, is widely used in conventional

agriculture. During the growing season, those crop fields often receive additional

broadband herbicide applications. However, despite this broad utilization, very little

is known on potential side effects or interactions between these different pesticide

classes on soil organisms. In a greenhouse pot experiment, we studied single and

interactive effects of seed dressing of winter wheat (Triticum aestivum L. var. Capo)

with neonicotinoid insecticides and/or strobilurin and triazolinthione fungicides and

an additional one-time application of a glyphosate-based herbicide on the activity of

earthworms, soil microorganisms, litter decomposition, and crop growth. To further

address food-web interactions, earthworms were introduced to half of the experimental

units as an additional experimental factor. Seed dressings significantly reduced the

surface activity of earthworms with no difference whether insecticides or fungicides

were used. Moreover, seed dressing effects on earthworm activity were intensified by

herbicides (significant herbicide × seed dressing interaction). Neither seed dressings

nor herbicide application affected litter decomposition, soil basal respiration, microbial

biomass, or specific respiration. Seed dressing did also not affect wheat growth. We

conclude that interactive effects on soil biota and processes of different pesticide classes

should receive more attention in ecotoxicological research.

Keywords: agrochemicals, agroecology, neonicotinoids, non-target effects, pesticide, seed coatings, soil

organisms, glyphosate-herbicide
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INTRODUCTION

The prophylactic treatment of crop seeds with insecticides
and/or fungicides, so called “seed dressing,” is very common
in conventional agriculture, especially for wheat, oilseed rape,
sugar beet, and maize (Krupinsky et al., 2002; Elbert et al.,
2008). Many of the agrochemicals used for seed dressings act
systemically, meaning that they will be distributed across the
whole crop plant and potentially also released into the soil.
Recently, neonicotinoid insecticides used for seed dressings
have received increased attention because of their proved
harm to insect pollinators (Gill et al., 2012; Whitehorn et al.,
2012; Easton and Goulson, 2013; Pisa et al., 2015). Besides
insecticides, various classes of fungicides are used for seed
dressings. However, very little is known about their potential
non-target effects. Due to the persistence of neonicotinoid
pesticides in the soil of up to several years, non-target
effects have been observed in various soil organisms inhabiting
agroecosystems (Goulson, 2013; Köhler and Triebskorn, 2013;
Chagnon et al., 2015; Pisa et al., 2015). Reports on effects of
insecticide and fungicide seed dressings vary from stimulating
Collembola surface activity (Zaller et al., 2016) to reducing
collembolan reproduction (Alves et al., 2014), increasing
numbers of protozoa and reducing plant decomposition rate
(Zaller et al., 2016) to increasing earthworm mortality (Alves
et al., 2013) or not influencing earthworm activity (Zaller et al.,
2016).

Fields where dressed seeds are applied are often additionally
treated with glyphosate-based herbicides, e.g., for pre-harvest
desiccation (Carvalho et al., 2009). Although for decades this
group of herbicides has been considered to be without harm
toward non-target soil organisms, scientific evidence is mounting
for adverse effects on symbiotic mycorrhizal fungi (Druille
et al., 2013; Zaller et al., 2014), earthworms (Dalby et al., 1995;
Morowati, 2000; Yasmin and D’souza, 2007; Piola et al., 2013;
Pelosi et al., 2014; Gaupp-Berghausen et al., 2015), and soil
microbial communities (Zabaloy et al., 2012; Imparato et al.,
2016). However, the combined effects of different pesticide classes
on soil organisms have received little attention (Yasmin and
D’souza, 2007; Santos et al., 2011; Van Der Sluijs et al., 2015).
Moreover, we are not aware of any study targeting the interactive
effects of seed dressings and glyphosate-based herbicides on soil
organisms and soil processes.

Microorganisms and soil fauna contribute to the
decomposition of plant residues in agricultural fields, the
mineralization of plant residues, and the recycling of plant
nutrients (Berg, 2009; Paul, 2015). The soil macrofauna,
especially vertically-burrowing earthworms, translocate plant
material and plant seeds from the soil surface into deeper
soil layers (Zaller and Saxler, 2007; Eisenhauer et al., 2008),
creating hotspots of high microbial activity in deeper soil
layers. Additionally, earthworms also feed on saprophytic fungi
and other microorganisms driving decomposition (Scheu and
Setälä, 2002; Curry and Schmidt, 2007). The resulting rate of
litter decomposition will thus be an integrated effect of both
earthworm and/or microbial activity (Hättenschwiler et al.,
2005).

The aim of this study was to assess (i) to what extent pesticide
seed dressings affect earthworm activity, soil microorganisms and
litter decomposition, (ii) the existence of potential interactive
effects between seed dressings and a glyphosate-herbicide
application (i.e., cocktail effects) on these soil functional groups,
and (iii) whether the presense of earthworms alters potential
pesticide effects. We hypothesized, that insecticide and fungicide
seed dressings would indirectly affect earthworms by reducing
their microbial food sources. Fungicide seed dressing should
exert negative effects on the fungal component of the soil
microbial biomass (Merrington et al., 2002), while glyphosate-
based herbicide application is assumed to decrease the overall
activity of soil microorganisms (Sannino and Gianfreda, 2001;
Zaller et al., 2014) and earthworms (Gaupp-Berghausen et al.,
2015) and to increase respiration as a stress response of sensitive
species (Zabaloy et al., 2012). Lastly, we expected non-target
effects of two pesticide classes to be more severe than single
applications.

MATERIALS AND METHODS

Experimental Design
The experiment consisted of a full-factorial design including the
factors Seed dressing (SD, 3 levels), Earthworms (EW, 2 levels),
Herbicide application (Herbic, 2 levels), and their interactions;
see below for details.

Experimental Factors: Seed Dressings, Earthworms,

and Herbicide Application
We tested the effects of three types of seed dressings in
this experiment: no seed dressing (treatment NO), seed
dressing dominated by neonicotinoid insecticide and associated
fungicides (treatment Insectic) and a fungicide seed dressing
(treatment Fungic; Table 1). Each seed dressing treatment was
replicated 10 times.

Eight days after the seeding two adult specimens of Lumbricus
terrestris L. per mesocosm were added to half of the mesocosms
(total average earthworm fresh mass added across treatments:
7.5 ± 0.8 g mesocosm−1; treatment +EW); no earthworms were
added to the other half of the mesocosms (treatment –EW). Each
earthworm treatment was replicated 5 times.

Thirty-one days after seeding, a broadband glyphosate-based
herbicide (Roundup Lb Plus; Monsanto Agrar Deutschland
GmbH, Düsseldorf, Germany) was applied to half of the
mesocosms (treatment+Herbic); no herbicide was applied to the
other half of the mesocosms (treatment –Herbic). This resulted
in five replicates of each of the above mentioned treatments after
this stage.

Experimental Setup
The experiment was conducted in an experimental greenhouse
at the University of Natural Resources and Life Sciences Vienna
(BOKU), Austria (N48◦14′12.4, E16◦20′08.4). The 60 cylindrical
mesocosms (diameter: 25 cm, height: 60 cm, volume: 30 l)
were randomly placed in three double-rows each consisting
of 2 × 10 mesocosms in east-west direction. The mesocosms
were filled with a soil mixture consisting of a substrate
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TABLE 1 | Overview of the seed dressing treatments and glyphosate-based herbicide used in the current experiment.

Treatment/Brand name Active ingredient Pesticide class Chemical class Conc. (g l−1) Systemic?

INSECTICIDE SEED DRESSING

Gaucho 600FS edigo lmidacloprid Insecticide Neonicotinoid 600 Yes

Prothioconazole Fungicide Triazolinthione 100 Yes

Celest Extra 050FS Difenoconazole Fungicide Conazole 25 No

Fludioxonil Fungicide Pyrrole 25 No

FUNGICIDE SEED DRESSING

EfA Universal Fluoxastrobin Fungicide Strobilurin 75 No

Prothioconazole Fungicide Triazolinthione 50 Yes

Fluopyram Fungicide Pyridylethylamide 10 No

Tebuconazole Fungicide Triazole 7.5 No

G/YPHOSATE-BASED HERBICIDE

Roundup Lb Plus Glyphosate Herbicide Organophosphate 360 Yes

mixture of 75% vol/vol haplic chernozem from an arable
field of the BOKU Research Farm (Groß Enzersdorf, Austria)
that was mixed with 1.4–2.2 mm quartz sand (general soil
characteristics are: C:N ratio 17.15, pH 7.45 ± 0.02) and 25%
commercial peat-free potting soil containing bark humus, wood
fibers, and green waste compost, sand, and mineral (NPK)
fertilizer. No soil sterilization was performed. All mesocosms
were outfitted with a 20 cm high barrier of plastic sheet
glued at the top of the mesocosm in order to prevent any
organisms from escaping. Between October and December
2013, these mesocosms were used to test non-target effects
of seed dressings on earthworms and Collembola and the
soil decomposition processes by microorganisms (Zaller et al.,
2016). After the termination of the previous experiment,
mesocosms were kept in the greenhouse, watering was stopped
and heating was kept at 20◦C in order to induce a complete
dry-out and defaunation of the soil. After 3 months, careful
examinations did not show any signs of earthworm or
Collembola activity in the pots. For the current experiment,
the original treatments were retained: i.e., seed dressings and
earthworm treatments were assigned to the same mesocosms
than in the former experiment. The Collembola treatment of the
former experiment was excluded in the current experiment; no
Collembola activity was observed during the course of the current
study.

Each mesocosm was sown with 18 seeds treated with pesticide
seed dressings (Table 1) of winter wheat (Triticum aestivum

L. var. Capo) placed in 1 cm depth in a consistent pattern.
Seeding density corresponded to 367 seeds m−2 that is within the
recommended seeding density for this variety. Seed material with
these dressings is available for Austrian farmers and was provided
by the Austrian Agency for Health and Food Security (AGES,
Vienna, Austria).

Added earthworms were purchased at a local fishing
equipment shop in Vienna (www.anglertreff.at). Earthworms
were placed on the soil surface and buried themselves into the soil
within several minutes. During the experiment, all mesocosms
received 1 g of dried hay per week, placed at the top of the soil; the
mesocosms that did not contain earthworms received the same
amount of hay to ensure equal nutrient input.

Thirty-one days after seeding, Roundup Lb Plus was applied to
wheat plants that were about 12 cm high at that time. Roundup
Lb Plus contains 30.8% glyphosate as active ingredient; 486 g l−1

as isopropylamin salt (Table 1). This formulation is registered
for use in arable crops, forestry, horticulture, viticulture,
and private use (http://pmg.ages.at/export/PMG/PMG/web/reg/
3393_901.html). We applied the herbicide as recommended on
the manual of the spray bottle, so that all plants were covered
with a mist. This resulted in a total of 1.47 ml m−2 that is 1.47
times the recommended application amount of 1 ml m−2 of this
product. Mesocosms near the treated ones were protected by a
plastic sheet. Plant death due to the herbicide application was
observed about 7 days after spraying.

The current experiment lasted from March until June 2014,
covering 97 days. The average air temperature during this period
was 18 ± 2.4◦C (mean ± standard deviation) at a relative
humidity of 59.4± 29.5%; measured with data loggers placed 2m
above the greenhouse floor (Tinytag, Gemini Data Loggers, UK).

Measurements
Earthworm Activity, Earthworm Survival, and

Development
In order to assess surface activity of earthworms, the toothpick
method was used (Zaller et al., 2014). Briefly, 12 regular wooden
toothpicks (length: 6.5 cm) were randomly inserted vertically
across the surface, with the tips slightly stuck in the ground.
Earthworms foraging aboveground knock over or incline the
toothpicks; the number of toothpicks differing from their original
upright position thus indicates the above ground activity of
earthworms. Toothpicks were inserted in the evening and
assessed the following morning; this was regularly done once a
week resulting in five assessments before herbicide application,
and twice a week after the herbicide application (3–4 day
interval) resulting in 16 assessments. Toothpicks were removed
between sampling dates. For the analysis of earthworm activity
three different categories of disturbance of the toothpicks were
used: value 0.1 for slight disturbance, 0.5 for disturbance in
which the toothpick was tilted more than or around 45◦ and
1 for those that were found horizontally on the surface. The
number of the toothpicks within each category was multiplied
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with the category value and then summed and taken as an
index measure of aboveground earthworm activity. Because
we were interested to see if either the size or the number
of earthworms is more responsive to our pesticide treatments,
activity of earthworms was further expressed as number of
toothpicks moved per g earthworm biomass (specific earthworm
activity) and per number of earthworms (individual earthworm
activity). After wheat harvesting, mesocosms were turned over
and each mesocosm searched for earthworms by two persons for
8 min. Earthworms were counted, washed free of attached soil,
carefully dried off on a paper towel, and collectively weighed per
mesocosm.

Soil Microbial Biomass and Activity
At the end of the experiment (97 days after seeding) five
random soil samples per mesocosm were taken with a soil corer
(diameter 1 cm, depth 5 cm) for the analysis of soil basal
respiration, microbial biomass, and specific respiration. These
samples were stored in polypropylene plastic bags, cooled at
5◦C and express-mailed to the soil laboratory of the Department
for Terrestrial Ecology at the University of Cologne, Germany,
for analysis. Soil microbial biomass (Cmic) was determined from
a 3 g subsample of fresh soil samples. Microbial biomass was
measured by substrate-induced respiration (Anderson, 1978)
using an automated respirometer based on electrolytic O2 micro
compensation (Scheu, 1992), as outlined in Beck et al. (1997). For
basal respiration, the average O2 consumption rate of samples
not amended with glucose was measured during 15–20 h after
attachment of samples to the respirometer. Microbial specific
respiration (qO2, µl O2 µg−1 Cmic h

−1) was calculated as the
quotient between basal respiration and microbial biomass.

Litter Decomposition
Litter decomposition rate (k) and stabilization factor (S) were
assessed using the tea bag method (Keuskamp et al., 2013)
to assess the breakdown of labile of easily degradable and
recalcitrant organic matter. In every mesocosm, we inserted 2
tea bags containing rooibos tea (Lipton, EAN: 87 22700 18843
8) and 2 containing green tea (Lipton, EAN: 87 22700 05552
5) at 8 cm depth. The tea bags were dried for 2 days at 55◦C
and weighed before insertion into the soil and were left in the
soil for 84 days. Afterwards tea bags were excavated, cleaned
from adhered soil particles, and dried for 3 days at 55◦C and
weighed. The decomposition rate (k) and the stabilization factor
(S) was calculated after Keuskamp et al. (2013) considering the
hydrolysable fraction of 0.842 g g−1 for green tea and of 0.552 g
g−1 for rooibos tea. Green tea and rooibos tea have different
decomposition rates meaning that rooibos tea decomposes
slower and continues when labilematerial in green tea has already
been consumed. The stabilization process begins during the
decomposition of the labile fraction of organic material (Prescott,
2010). This method was already used in some other studies
to examine non-target effects of glyphosate-based herbicides
(Gaupp-Berghausen et al., 2015) and insecticide and fungicide
seed dressings (Zaller et al., 2016).

In each mesocosm, soil moisture was measured using
time domain reflectometry (Trime Pico 63/32 probe; IMKO,

Micromodultechnik GmbH, Ettlingen, Germany). These
measurements were taken once a week by inserting the 20 cm
long probe in the center of each mesocosm.

Wheat Growth and Biomass Production
Wheat height was recorded once a week on all plants per
mesocosm by measuring their height from the soil surface to
the tip of the longest leaf. Height measurement was stopped
in mesocosms after the herbicide was applied on day 31 after
seeding. On day 43 of the experiment, above ground biomass
from all the mesocosms was harvested by cutting all wheat plants
at the soil surface using scissors, then dried for 48 h at 55◦C and
weighed. The plant density per mesocosm on the day of herbicide
spraying was on average 16.3± 1.3 plants mesocosm−1 and at the
moment of final harvest of the remaining mesocosms 16.4 ± 1.1
plants mesocosm−1.

Statistical Analyses
All variables were tested for normality using P-P plots
and homogeneity of variances using the Levene test and
log transformed when necessary. Influence of seed dressing
(SD) or herbicide application (Herbic) on earthworm surface
activity (average moved toothpicks pot−1 day−1, cumulated
moved toothpicks, activity per earthworm biomass) was tested
using repeated measures analysis of variance (ANOVA). When
Mauchly’s Test of Sphericity indicated that the assumption of
sphericity had been violated, the Greenhouse-Geisser correction
was used. Three factorial analysis of variance (ANOVA) with
the factors SD, Herbic or Earthworms and interactive effects
among SD×Herbic, SD× Earthworms orHerbic× Earthworms
was included in the statistical model to examine effects on litter
decomposition, soil basal respiration, qCO2, microbial biomass,
wheat growth, and wheat biomass as well as on earthworm
numbers and biomass at the end of the experiment. In all analyses
soil moisture content was used as a covariate. Statistical analyses
were carried out using Minitab statistical software (Release 14,
Minitab Corp., PA, USA).

RESULTS

Earthworm surface activity (per g earthworm, per number of
earthworms, and cumulated surface activity) was significantly
reduced by seed dressings compared to undressed seeds,
regardless whether insecticide or fungicide seed dressings
were used (Figure 1, Table 2). Across seed dressings, herbicide
application reduced specific earthworm activity; while individual
earthworm activity was affected by an interaction between seed
dressings and herbicide application (Figure 1, Table 2). In our
experiment, seed dressings reduced (cumulative) earthworm
activity by 9.2% while herbicide application reduced it by 19.3%.

At the end of the experiment we found 88.3% of the initially
inserted adult earthworms and 59.6% of the initially inserted
biomass of earthworms (Table 3). Neither the number, nor the
biomass of retrieved adult earthworms at harvest was affected
by seed dressings, herbicide applications or their interactions
(adult earthworm numbers: SD – F = 1.142, P = 0.345;
Herbic – F = 0.111, P = 0.744; SD × Herbic – F = 0.331,
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FIGURE 1 | Earthworm surface activity in mesocosms where winter wheat with different pesticide seed dressings was sown (NO, no seed dressing;

insectic: neonicotinoid insecticide seed dressing; fungic: fungicide seed dressing) without (A,C,E) or with glyphosate-based herbicide application

(B,D,F) at day 31. Means, n = 5. Statistical results in Table 2.

P = 0.723; adult earthworm biomass: SD – F = 1.352, P =

0.288; Herbic – F = 0.088, P = 0.770; SD × Herbic – F =

0.937, P = 0.414). Moreover, at the end of the experiment,
all mesocosms contained many juvenile, initially not inserted
earthworms.Mesocosms initially without earthworm inoculation
contained at harvest 42.47± 19.02 juvenile individuals with 0.85
± 0.41 g mesocosm−1, mesocosms with earthworm inoculation
contained 42.17 ± 21.18 juvenile individuals with 5.46 ± 4.46 g
mesocosm−1. Total earthworm numbers retrieved at harvest
was neither affected by earthworm treatment (F = 0.583, P
= 0.449), seed dressing (F = 1.249, P = 0.296), herbicide

application (F = 0.722, P = 0.400) nor the interactions of
these factors. Total biomass of earthworms at harvest was
significantly lower in non-earthworm treatments (F = 33.253,
P < 0.001) but not affected by seed dressing (F = 0.525,
P = 0.595), herbicide (F = 0.713, P = 0.403) or their
interactions.

Litter decomposition rate (k) and stabilization factor (S)
decreased when added L. terrestris earthworms were present, but
were not affected by seed dressings, herbicide application or their
interactions (Table 2, Figure 2). Soil basal respiration, microbial
biomass, and specific respiration were neither affected by seed
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TABLE 2 | Statistical results testing the effects of seed dressings (SD), earthworms (EW) and glyphosate-herbicide application on earthworm surface

activity, litter decomposition, soil microbial activity, wheat growth, and wheat biomass production in mesocosms.

Parameter Seed Dressing (SD) Earthworms (EW) Herbicide (Herbic) SD × EW SD × Herbic EW × Herbic

F P F P F P F P F P F P

EW surf. act., specific (toothp. g−1

EW)rmA
4.349 0.025 n.a. n.a. 4.44 0.046 n.a. n.a. 2.872 0.077 n.a. n.a.

EW surf. act., specific (toothp.

no−1 EW)rmA
2.776 0.083 n.a. n.a. 3.571 0.071 n.a. n.a. 4.769 0.019 n.a. n.a.

EW surf. act., mean (toothpicks)rmA 4.011 0.033 n.a. n.a. 2.619 0.120 n.a. n.a. 0.440 0.649 n.a. n.a.

EW cumul. surf. act. (toothpicks)rmA 3.742 0.040 n.a. n.a. 0.116 0.736 n.a. n.a. 2.422 0.112 n.a. n.a.

Litter decomposition rate (k) 1.856 0.168 14.987 <0.001 0.001 0.971 0.252 0.092 1.159 0.323 0.416 0.522

Litter stabilization index (S) 1.410 0.254 14.463 <0.001 0.005 0.942 2.399 0.102 0.658 0.522 1.527 0.223

Soil basal respiration (1-Jg COr C

g−1 h-1)

0.525 0.595 0.02 0.889 0.428 0.516 1.651 0.203 0.279 0.758 0.132 0.718

Soil microbial biomass (Cmic, I-Jg

C g- 1)

1.527 0.228 1.522 0.224 0.183 0.671 0.032 0.969 1.356 0.268 0.046 0.831

Soil qC02 (µg C02–C g- h−1 Cmic

h−1)

0.880 0.164 0.2 0.657 1.069 0.307 0.751 0.478 2.036 0.142 0.219 0.642

Wheat height (cm)rmA 1.843 0.181 9.843 0.005 n.a. n.a. 1.214 0.315 n.a. n.a. n.a. n.a.

Wheat biomass (g) 0.668 0.517 4.925 0.032 n.a. n.a. 0.377 0.688 n.a. n.a. n.a. n.a.

Significant effects in bold.

n.a. Not applicable; rmA analyzed with repeated measures ANOVA.

TABLE 3 | Earthworm numbers and biomass (fresh mass) retrieved from

mesocosms where winter wheat with seed dressings was sown or

glyphosate-herbicide was applied.

Experimental

factors

Adult earthworms

(L. terrestris)

Juvenile unidentified,

earthworms

Seed

dressing

Herbicide Number Biomass (g) Number Biomass (g)

NO No 1.6 ± 1.5 3.2 ± 3.6 38 ± 26 0.607 ± 0.411

Yes 2.0 ± 1.2 5.4 ± 3.3 45 ± 21 1.008 ± 0.647

Insecticide No 1.0 ± 1.4 3.0 ± 4.2 41 ± 18 0.840 ± 0.441

Yes 2.0 ± 1.2 4.6 ± 3.8 38 ± 19 0.697 ± 0.399

Fungicide No 2.2 ± 2.6 5.7 ± 7.2 45 ± 17 0.874 ± 0.329

Yes 1.8 ± 2.2 4.9 ± 5.4 38 ± 26 0.918 ± 0.822

Means ± st. dev., n = 10 for factor seed dressing; n = 5 when glyphosate was applied.

No significant effects of seed dressings or herbicide application on earthworm numbers

or biomass were observed.

dressings, earthworm, herbicide application, or their interactions
(Table 2, Figure 3).

Wheat height and biomass production until 3 days before
herbicide application were significantly reduced by earthworm
activity but not affected by seed dressings nor an interaction
between earthworms and seed dressings (Table 2, Figure 4).

DISCUSSION

To the best of our knowledge, this study is among the first studies
addressing single and combined effects of different pesticide
classes on soil organisms and soil processes. We aimed to

mimic a typical farmland situation: wheat sown with pesticide
treated seeds receiving an additional herbicide application later
in the season. Our findings showed that seed dressings reduced
earthworm activity regardless which pesticide class was used
for seed treatment. Herbicide application itself reduced, and
in interaction with seed dressings further decreased earthworm
activity. Activity of soil microorganisms or litter decomposition
appeared to be little affected by these pesticides.

Seed Dressing Effects
The current study is an expansion of a previous one where
the effect of seed dressings were studied on the activity of
earthworms, Collembola, and soil microorganisms (Zaller et al.,
2016). In the current experiment we additionally applied a
herbicide treatment in order to test a common farmland
situation. Our current findings are partly in contrast with
our previous findings where no effects of seed dressings on
earthworm activity and a reduced litter decomposition in
response to seed dressings was observed (Zaller et al., 2016). We
attribute the different outcomes to the following reasons. First,
in the previous study seed dressings were applied for the first
time, while in the current experiment by utilizing the mesocosms
from the previous experiment, seed dressings were applied for a
second time within 5 months. Studies have shown that pesticides
from seed dressing application (at least with neonicotinoid
insecticides) accumulate in soils which could have resulted
in an increased impact on non-target organisms (Goulson,
2013). Second, the response of soil microorganisms and litter
decomposition after a one-time application of pesticides (Zaller
et al., 2016) suggest an initial sensitivity but a rapid adaptation
of soil microorganisms to metabolize these substances (Griffiths
et al., 2001; Liu et al., 2011; Cycon et al., 2013). Similar to the
previous study, we found no effect of seed dressings on crop
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FIGURE 2 | Litter decomposition decomposition rate (k) and stabilization factor (S) in mesocosms without or with addition of L. terrestris earthworms,

without (A,C) or with (B,D) glyphosate-based herbicide application. Means ± st. dev., n = 10. Statistical results in Table 2.

growth or biomass production. This might be due to a reduced
pressure of pest insects or fungal diseases in our greenhouse
experiment. However, even under field conditions the effect of
seed dressing on yields appears to be negligible (Goulson, 2013;
Budge et al., 2015; Furlan and Kreutzweiser, 2015).

There is good evidence that neonicotinoid insecticides
directly affect earthworms (Dittbrenner et al., 2010, 2011).
However, while we investigated actual pesticide formulations
used by farmers, others investigated effects of the direct active
ingredients. Significant loss in body mass of L. terrestris
was observed with imidacloprid at concentrations ranging
between 0.66 and 4.00mg kg−1 soil after only 7–14 days
of exposure (Dittbrenner et al., 2010, 2011). These sub-
lethal effects occur well below the Predicted Environmental
Concentration range of 0.33–0.66mg kg−1 soil (Dittbrenner
et al., 2010). Most likely, overall pesticide concentrations in
soil were much lower in the current study with addition of
only 16 treated seeds per mesocosm, however no data are
available of the concentrations in the soils in the mesocosms
used. We assume that earthworms perhaps also came in direct
contact with the pesticides by feeding on the treated seeds
(Milcu et al., 2006; Zaller and Saxler, 2007; Forey et al.,
2011).

For other earthworm species than used in the current study,
neonicotinoid insecticides resulted in an avoidance of treated
soils (Dittbrenner et al., 2011, 2012), an altered burrowing
activity (Capowiez et al., 2003, 2006; Capowiez and Bérard,
2006), DNA damage (Zang et al., 2000) or increased mortality
(Tu et al., 2011). When comparing the acute toxicity of 24
insecticides on the earthworm species E. fetida, the neonicotinoid
imidacloprid was listed in the category super toxic in both
contact filter paper and soil toxicity bioassay tests (Wang et al.,
2012a,b). However, earthworm responses to pesticides have been
shown to be species-specific and the reaction of one species
precludes a serious assessment across all earthworms (Pelosi
et al., 2014; Pisa et al., 2015). Earthworm species also differ in
their response to different pesticide classes: species feeding on the
soil surface, are more affected by pesticides applied aboveground
than those feeding deeper in the soil (Pelosi et al., 2014).
Besides insecticides also fungicides had detrimental effects on
earthworms (Jänsch et al., 2006). However, in comparison with
herbicide and fungicides, insecticides show amore negative effect
on three earthworm species (Allobophora chlorotica, Lumbricus
castaneus, L. terrestris) (Pelosi et al., 2013).

Studies testing non-target effects of fungicide classes used in
our seed dressings are very rare. A triazole fungicide application
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FIGURE 3 | Soil basal respiration, microbial biomass and specific respiration in mesocosms where winter wheat treated with different seed dressings

(NO, no seed dressing; Insectic, neonicotinoid insecticide seed dressing; Fungic, fungicide seed dressing) were sown, without or with addition of L.

terrestris earthworms and without (A,C,E) or with (B,D,F) glyphosate-herbicide application. Means ± st. dev., n = 10. Statistical results in Table 2.

resulted in a negative impact on the epidermic cells of E. fetida
earthworms (Gao et al., 2013), however it is unclear whether there
was a similar mode of action in our earthworm species. Clearly,
there is a great demand for more studies in this subject.

Herbicide Effects
The reduction in earthworm activity after application of
glyphosate-based herbicide is in accordance with recent findings
studying the same earthworm species (Gaupp-Berghausen
et al., 2015) although a lower dosage was used in the
current experiment. After the herbicide application, the seed
dressings further reduced earthworm activity, indicating possible
synergistic effects of these different pesticide classes. In other
studies a glyphosate-based herbicide also reduced reproduction

(Casabe et al., 2007; Gaupp-Berghausen et al., 2015) and led
to decreased growth and survival (Eijsackers et al., 2005).
Another study shows that glyphosate herbicide application
resulted in a high percentage (50%) of lethargic Lumbricus
sp., while the combined effect with a pesticide resulted in
increased mortality (Green et al., 2008). Even though we did
not specifically investigate the reproduction of L. terrestris in the
current experiment, the high numbers of juvenile, not identifiable
earthworm species in each mesocosm indicated that hatching
rates from cocoons were neither compromised by seed dressings
nor the herbicide application.

When reporting non-target effects of pesticide formulations
it is important to also consider side effects of numerous not-
declared surfactants in these formulations as they might be more
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FIGURE 4 | Height growth and shoot biomass production of winter wheat treated with different seed dressings (NO, no seed dressing; Insectic,

neonicotinoid insecticide seed dressing; Fungic, fungicide seed dressing) grown in mesocosms without (A,C) or with (B,D) addition of L. terrestris

earthworms. Means ± st. dev., n = 10. Statistical results in Table 2.

toxic than the active ingredient itself (Moore et al., 2012; Cuhra
et al., 2016; Mullin et al., 2016).

Earthworm Effects
Earthworms did not interact with seed dressings or herbicide
application. This is contrast to previous studies (Zaller et al.,
2014, 2016; Gaupp-Berghausen et al., 2015) but might just
reflect specific responses of earthworms to different pesticides.
Our understanding on feedback relations between pesticides,
species interactions, populations and communities is very limited
and demands more detailed studies (Köhler and Triebskorn,
2013). Contrary to our expectations, earthworms reduced
litter decomposition, and reduced wheat growth and biomass
production. A reduction in litter decomposition by earthworms
was most likely an indirect effect via physical alterations of the
soil environment as the organic matter in litter bags was only
accessible to soil micro- and meso-fauna but not to earthworms.
Such indirect effects could result from earthworm grazing on
soil fungi and microorganisms as well as on soil meso- and
micro-fauna (Edwards and Fletcher, 1988; Curry and Schmidt,
2007) thereby reducing overall decomposition. Earthworms are
generally considered to increase plant growth (Van Groenigen

et al., 2014), but not in all situations (Zaller and Arnone, 1999)
and also reduced plant growth in presence of earthworms has
been observed (Zaller et al., 2013; Arnone and Zaller, 2014).
However, the influence of earthworms on plant growth and
biomass production, and to which direction, depend mainly
on earthworm and plant species in the system (Laossi et al.,
2010; Doan et al., 2013) and still much is unknown about
the precise earthworm-plant relationships (Scheu, 2003) or
earthworm effects on root production (Arnone and Zaller, 2014).

CONCLUSIONS

The current findings in addition to our previous ones (Zaller
et al., 2016) suggest different sensitivity of soil organisms
dependent on how often pesticide treated seeds were sown.
We found that micro- and meso-fauna were already influenced
after a single seed dressing application, while macro-fauna
responded only after the second seed dressing application
in the current study. It is unclear whether this is a more
widespread phenomenon because ecotoxicological tests very
rarely investigate repeated applications of pesticides (Pelosi
et al., 2014). To what extent pesticide-induced community

Frontiers in Plant Science | www.frontiersin.org 9 February 2017 | Volume 8 | Article 215

http://www.frontiersin.org/Plant_Science
http://www.frontiersin.org
http://www.frontiersin.org/Plant_Science/archive


Van Hoesel et al. Seed Dressing × Herbicide Effects on Soil Biota

tolerance is responsible for acute vs. chronic toxicity of
pesticides on earthworms is another underrepresented research
area. In the current study we observed for the first time
interactive effects on soil organisms between pesticides in
seed dressings and surface applied herbicides. This indicates
that pesticide risk assessments considering a single species
subjected to a one time application of one pesticide class
might underestimate the real world situation in agricultural
fields.
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