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H I G H L I G H T S

• Habitat quality was similar between restored and reference wetlands in Iowa.
• Complex mixtures of pesticides are detected in frog tissues (liver and whole body).
• The number of fungicides (up to 8) in frog tissues is largest reported to date.
• Life history has the potential to impact pesticide bioaccumulation in frogs.
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Habitat loss and exposure to pesticides are likely primary factors contributing to amphibian decline in agricultur-
al landscapes. Conservation efforts have attempted to restore wetlands lost through landscape modifications to
reduce contaminant loads in surface waters and providing quality habitat to wildlife. The benefits of this
increased wetland area, perhaps especially for amphibians, may be negated if habitat quality is insufficient to
support persistent populations. We examined the presence of pesticides and nutrients in water and sediment
as indicators of habitat quality and assessed the bioaccumulation of pesticides in the tissue of twonative amphib-
ian species Pseudacris maculata (chorus frogs) and Lithobates pipiens (leopard frogs) at six wetlands (3 restored
and 3 reference) in Iowa, USA. Restored wetlands are positioned on the landscape to receive subsurface tile
drainagewaterwhile referencewetlands receivewater fromoverland run-off and shallow groundwater sources.
Concentrations of the pesticides frequently detected inwater and sediment samples were not different between
wetland types. The median concentration of atrazine in surface water was 0.2 μg/L. Reproductive abnormalities
in leopard frogs have been observed in other studies at these concentrations. Nutrient concentrations were
higher in the restored wetlands but lower than concentrations thought lethal to frogs. Complexmixtures of pes-
ticides including up to 8 fungicides, some previously unreported in tissue, were detected with concentrations
ranging from 0.08 to 1500 μg/kg wet weight. No significant differences in pesticide concentrations were
observed between species, although concentrations tended to be higher in leopard frogs compared to chorus
frogs, possibly because of differences in life histories. Our results provide information on habitat quality in
restored wetlands that will assist state and federal agencies, landowners, and resource managers in identifying
and implementing conservation and management actions for these and similar wetlands in agriculturally
dominated landscapes.

Published by Elsevier B.V.

1. Introduction

Degradation and loss of habitat are among the primary reasons
amphibian populations have declined worldwide (Collins and Storfer,
2003). Between 1850 and 1950 the amount of farmland in the United
States increased from less than 300 million to more than 1.1 billion
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acres (U.S. Department of Agriculture, 2013). However, in the last 5
decades the amount of total cropland in the United States has decreased
as the amounts of urban, residential and special-use lands (mostly parks
and wildlife areas) are increasing (U.S. Department of Agriculture,
2007). In agriculturally dominated states like Iowa, 75% of the acreage
is cropland (U.S. Department of Agriculture, 2007). These land-use
changes may not always destroy habitat but usually include alterations,
such as the application of chemicals that can threaten amphibian
survival. Amphibian declines and abnormalities have been attributed
to contaminants, often with a focus on water quality, specifically
water at breeding sites. In a recent survey 30–60%of shallowgroundwa-
ter and 60–95% of streams across different land-use categories in the
United States were contaminated with at least one pesticide (Gilliom,
2007).

Contaminants have the potential to cause lethal effects in amphib-
ians, such as reduced survival or sub-lethal effects such as immunosup-
pression, malformations, compromised reproduction and reduction in
growth and development (Hecnar, 1995; Taylor et al., 2005; Johnson
et al., 2007; Gahl et al., 2011; Groner and Relyea, 2011). For example,
the herbicide atrazine has the potential to cause immunosuppression
in adult northern leopard frogs (Brodkin et al., 2007) and impair sexual
development ofmale frogs (Hayes et al., 2003). Glyphosate formulations
(Howe et al., 2004; Relyea, 2005) aswell as some fungicide formulations
(Belden et al., 2010; Bruhl et al., 2003) are toxic to amphibians at envi-
ronmentally relevant concentrations. Decreases in growth and develop-
ment have also been observed after exposure to fungicide formulations
containing pyraclostrobin (Hartman et al., 2014). Laboratory studies
designed to identify acute and chronic effects frequently focus on a sin-
gle compound or a specific class of compounds that are often conducted
in simplified mesocosm settings (Relyea and Mills, 2001; Relyea, 2005;
Boone et al., 2005; Boone, 2008). However, pesticides in the environ-
ment exist as mixtures and efforts in the field to elucidate some of
these relationships in non-laboratory settings have been limited.

Exposure to pesticides can lead to suppression of the immune sys-
tem, preventing amphibians fromdeveloping a normal response against
pathogens (Mann et al., 2009). Christin et al. (2004) exposed frogs
(Xenopus laevis and Rana pipiens) to amixture of herbicides and insecti-
cides and found that at environmentally relevant concentrations,
combinations of these pesticides altered aspects of the immune system.
However, Davidson et al. (2007) found no correlation between a
common insecticide, carbaryl, and amphibians' susceptibility to the am-
phibian chytrid fungus (Batrachochytrium dendrobatidis, Bd). Increased
eutrophication due to nitrogen based fertilizers, coupled with pesticide
application, may cause trophic cascades resulting in increased rates of
parasitism in wetlands and has been linked to immunosuppression in
amphibians (Brodkin et al., 2007; Johnson et al., 2007). Although a
direct link has been made between pesticide exposure and infection
by trematodes (Rohr et al., 2008; Kiesecker, 2002), a general under-
standing of these interactions in the field is lacking because results
vary by species and land-use (King et al., 2007).

Despite landscape alterations and the suite of potentially negative
effects related to such alterations, there are examples of amphibians
persisting inmodified habitats. For example, in Eastern Europe amphib-
ians breed successfully in man-made drainage ditches (Hartel et al.,
2001), in the Midwest, certain species persist despite agrochemical in-
puts and habitat modifications (Kolozsvary and Swinhart, 1999;
Gilliland et al., 2001) and in Florida not all species of anurans appeared
to be adversely affected by development as long as permanent habitat
was available for breeding (Delis et al., 1996). In areas of California
where habitats have been altered by human activities many of the
amphibian species (with the exception of Ambystoma californiense)
have significantly declined (Davidson et al., 2002). Although animals
can persist in altered landscapes, careful assessments of long-term
persistence and population health are warranted. The presence of
amphibians, or the appearance of population persistence can mask a
host of problems that may manifest in the long-term such as increased

susceptibility to disease, reduced probability of survival and recruit-
ment or other genetic issues (i.e. breeding) related to lack of habitat
connectivity.

Much of Iowa illustrates the changes made to the land for crop pro-
duction over the last two centuries; greater than 90% of the wetlands
have been drained and replaced with row crop agriculture, primarily
corn and soybeans (Whitney, 1994). Despite the dramatic changes,
there is still a rich herpetofauna represented in Iowa and much of the
Midwest. Although some amphibians persist, approximately 45% of
the amphibian and reptile species in Iowa are imperiled because of hab-
itat fragmentation and anthropogenic activities (Green, 2005; IDNR,
2006). Thus, we chose the Des Moines Lobe of central Iowa to assess
the presence of pesticides and nutrients in water and sediment as indi-
cators of habitat quality and to assess the bioaccumulation of pesticides
in the tissue of two amphibian species (chorus frogs (Pseudacris
triseriata) and leopard frogs (Lithobates pipiens)). Furthermore, in
2001, a major initiative between the state of Iowa and United States
Department of Agriculture (USDA) Farm Service Agency enacted the
Conservation Reserve Enhancement Program (CREP) to help identify
and restore wetlands lost through landscape modifications as a means
to reduce nitrogen concentrations and loads in surface waters. The
Des Moines Lobe hosts 72 of these CREP sites in 29 counties. The
resulting wetlands appear to provide additional ecosystem services
such as habitat for migrating waterfowl (O'Neal et al., 2008), however,
formany organisms, such as amphibians the related costs of livingwith-
in a matrix of highly modified habitat have not been determined. For
example, the value of increased habitat for species with low vagility
(e.g., amphibians) is assumed to be high, but benefits may be negated
if the quality of the habitat is insufficient to support amphibian popula-
tions' overtime.

Our objectivewas to determine if restoredwetlands in an agricultur-
al landscape provide similar quality habitat for amphibians as adjacent
reference wetlands as determined by the occurrence and distribution
of 1) pesticides and nutrients in water, 2) pesticides in bed sediment
and 3) pesticides in tissues of leopard and chorus frogs, two amphibians
found commonly in this area. Understanding the occurrence anddistribu-
tion of contaminants provides information on habitat quality in restored
wetlands that can assist state and federal agencies, landowners, and
resource managers in identifying and implementing conservation and
management actions for these and similar wetlands and their associated
amphibian fauna. Our data also provides useful covariates (i.e. pesticide
and nutrient concentrations) for assessing population demographics
and the long-term trajectory of populations faced with the challenges of
living in an altered landscape.

2. Materials and methods

2.1. Site information

Six wetlands in the Des Moines Lobe landform of central Iowa
(Fig. 1) were sampled in 2012 and 2013 (3 restored and 3 reference).
The restored wetlands were developed through the CREP and were
positioned on the landscape to receive substantial amounts of tile drain-
agewater to reduce nitrate concentrations to surrounding surfacewater
bodies. Approximately, 80% of the flow into the restored wetlands is
from tile drains and all wetlands sampled had several tile lines and
ditches leading directly into them. Two tile drains were observed at
Marshall and Story while four large ditches with at least one outflow
drain were observed at Greene. All drains were considered laterals
andwere about 20–25 cm in diameter. The referencewetlands are likely
remnantwetlands but were restored from past agricultural use by land-
owners and are not typically positioned in the landscape to accept a
significant amount of tile drainage from active agricultural fields and
are not part of the CREP. Reference wetlands receive the majority of
their water from overland flow (i.e. run-off) and, to a lesser extent,
from shallow groundwater sources and tile drain outlets. Bjorkboda
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likely had at least 3 tile outlets into a constructed drainage ditch that
runs into the wetland from the south. Boone appeared to have at least
one small tile drain near the outlet of the wetland and there are at
least 2 outlets on a small neighboring wetland to the north. No tile
drains were observed at or around Bob Pyle. All wetlands were less
than 2.5 ha in surface area (Table 1). Only restored wetlands greater
than two years old were included to insure that vegetative buffers
were well established. Average depths of the restored wetlands ranged
from 56 to 70 cm with maximum depths between 158 and 240 cm.
Average depths of the reference wetlands were less than 22 cm with
maximumdepths between 28 and 56 cm. Exact locations of the restored

wetlands are proprietary andwritten permissionwas obtained from the
landowners and public land managers prior to the start of sampling.

2.2. County-level pesticide use data

Estimated county-level pesticide use data from 2011 was compiled
for all compounds detected during the study (Table 2). To capture all
potential pesticides applied to croplands in each county EPest-high
estimates were used (Baker and Stone, 2013). If there was no pesticide
use reported on a crop in a particular reporting district, EPest-high
estimates report use as un-surveyed or in some cases will report use

Fig. 1.Mapof the six Iowawetland sites sampled in 2012 and 2013 including land-cover information (Han et al., 2012). Study site labels beginningwith a “C” are restoredwetlands and “R”
for reference wetlands. For corresponding site names see Table 1.

Table 1
List of the three restored and three reference wetlands sampled in 2012 and 2013 for pesticides and nutrients in the Des Moines Lobe, IA, USA.

Number USGS station name Site name Wetland type County Established Wetland area (hectare)

C1 Wetlands nr Gilbert, IA Story Restored Story 2005 1.5
C2 Wetlands nr Grand Junction, IA Greene Restored Greene 2007 1.38
C3 Wetlands nr Melbourne, IA Marshall Restored Marshall 2009 1.74
R1 Wetlands nr Bjork Boda, IA Bjorkboda Reference Hamilton Remnant 2.31
R2 Wetlands nr Story City, IA Bob Pyle Reference Story Remnant 0.607
R3 Wetlands nr Stratford, IA Boone Reference Boone Remnant 2.09

USGS = U.S. Geological Survey.
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rates from neighboring counties as an estimate of the unreported use in
a particular crop reporting district (Thelin and Stone, 2013).

2.3. Sample collection

Surface water samples were collected from the six wetlands at three
times (early,mid and late) during the growing season in 2012 and 2013.
Water samples from the six wetlandswere collected over nomore than
a two day period during each of the three sampling events in both years.
These samples were analyzed for pesticides and pesticide degradates as
well as nutrients. Early samples were collected in April of 2012 andMay
of 2013, while mid and late samples were collected in June and July,
respectively in both years. In 2012, the Midwest experienced a severe
drought. Between July 2012 and February 2013, there were 30 weeks
inwhich 25% ormore of theMidwestwas listed as experiencing “severe
drought” (National Drought Mitigation Center (NDMC), 2014). For this
reason, all three referencewetlands were dry by the July 2012 sampling
event, and only water from the restored wetlands was collected and
analyzed. Grab samples were collected from each site in pre-cleaned
bottles from the outflow point of the wetland before being packed on
ice and shipped to the laboratories for analysis.Water samples for nutri-
ents and dissolved organic carbon were collected following standard
USGS procedures (U.S. Geological Survey, 2006; Ward and Harr,
1990). Basic water quality parameters including specific conductance
(μS/cm@25 °C) and pH were also measured using a calibrated YSI
probe (model 556) [YSI, Yellow Springs, Ohio, USA] at three points
around the outflow of the wetland.

Bed sediment samples were collected (U.S. Geological Survey, 2006;
Hladik et al., 2009) from the six wetlands in early August of 2012
(during the beginning of the drought) from several depositional areas
near the inflow of water and were homogenized in the field. In 2013
bed sediment samples were collected from several depositional areas
at each site twice, once in May and again in July. All bed sediments
were collected within one to two weeks of their corresponding water
sample. Distance from the inflow varied by wetland and sampling loca-
tions and sites were chosen based on the accumulation of fine grain

(depositional) sediment near an observable inflow at or near the edge
of water.

Four to five adult male frogs of each species were collected in 2012
from 4 of the 6 wetlands by hand at night during peak calling events.
Males were selected over breeding females to limit the potential impact
collectionmight have on the population. In May, four chorus frogs were
collected from one restored wetland (Greene) and five chorus frogs
were collected from one reference wetland (Boone). In June, a total of
twenty leopard frogs (five from each wetland) were collected from
two restored (Greene, Story) and two reference wetlands (Bjorkboda,
Boone). Individuals were shipped alive to the USGS National Wildlife
Health Center (NWHC) in Madison, WI and assessed for parasites, Bd
and abnormalities, and cultured for Ranavirus. In the laboratory, individ-
uals were euthanized using a dilute buffered solution of Tricaine
methanesulfonate (MS222; 0.5 g/1 L water) and the livers removed,
wrapped in clean aluminum foil and frozen on dry ice prior to pesticide
analysis. In 2013, five adult male chorus frogs were collected from each
of six wetlands, euthanized in the field using a dilute buffered solution
of MS222 (Fellers and Freel, 1995). Individual mass was measured in
the laboratory at Iowa State University in Ames, IA and the individuals
werewrapped in aluminum foil, and frozen for pesticide analysis. All in-
dividuals were captured at night in May, within a three-day period.

2.4. Extraction and analysis

2.4.1. Surface water samples for pesticides and nutrients
Filteredwater sampleswere analyzed for a suite of 98 pesticides and

pesticide degradates by gas chromatography mass spectrometry using
previously published methods (Hladik et al., 2008; Reilly et al., 2012).
Briefly, 1 L of sample water was extracted onto an Oasis HLB solid-
phase extraction (SPE) cartridges (6 cm3, 500 mg, 60 μm, Waters
Corporation, Milford, Massachusetts, USA). All samples were spiked
with 13C3-atrazine (Cambridge Isotope, Andover, Massachusetts, USA)
as a recovery surrogate. SPE cartridges were eluted with ethyl acetate.
Additionally, the empty bottle was rinsed with dichloromethane
(DCM) to remove any pyrethroids that may have sorbed to the bottle
during sample processing, this fraction was added to the SPE eluent.
All sample extracts were analyzed on an Agilent (Santa Clara, California,
USA) 7890 gas chromatograph coupled to an Agilent 5975 (Folsom, CA)
mass spectrometer (GC–MS) operating in electron ionization (EI)mode.
Data was collected in selective ion monitoring (SIM) mode with each
compound having one quantifier ion and 1–2 qualifier ions. Method de-
tection limits (MDLs) for all compounds ranged from 0.001 to 0.01 μg/L
(Reilly et al., 2012).

Six neonicotinoids, diuron and three diuron degradates were mea-
sured in the water samples using a previously published method
(Hladik and Calhoun, 2012). Briefly, a 1-L water sample was extracted
onto an Oasis HLB SPE cartridge and eluted with 10 mL of 50:50 DCM:
acetone. Sampleswere spikedwith d4-imidacloprid (Cambridge Isotope)
and monuron (USEPA Pesticide Repository, Ft. Meade, Maryland, USA)
as recovery surrogates prior to extraction. Extracts were analyzed
on an Agilent 1260 bio-inert liquid chromatograph (LC) coupled to an
Agilent 6430 tandem mass spectrometer (MS/MS). The MS/MS was
operated under electrospray ionization (ESI) in positive mode, data
were collected in multiple reaction monitoring (MRM) modes. The
MDLs ranged from 0.003 to 0.006 μg/L (Hladik and Calhoun, 2012).

Water samples were also analyzed for glyphosate, amino-
methylphosphonic acid (AMPA) and glufosinate by LC/MS/MS with
ESI in negative-ion mode using MRM. Filtered water samples were
stored at 4 °C then derivatized within 5 days after collection using a 5-
percent borate buffer to adjust the pH to 9.0, followed by the addition
of 2.5 millimolar (mM) 9 fluorenylmethylchloroformate in acetonitrile.
Derivatization was carried out in the dark in a water bath at 40 °C for
approximately 24 h. Following derivatization, the samples were
extracted onto SPE cartridges, and the SPE cartridges were rinsed with

Table 2
2011 Estimated county level pesticide use (E-Pest high) data (kg) of the compounds
detected during the study (Baker and Stone, 2013). Several compounds detected had no
reported country level pesticide use and included azinphos methyl, EPTC, fenbuconazole,
flusilazole, imazalil, resmethrin, pyrimethanil, prometon, triticonazole, and zoxamide.

Compound Boone Greene Hamilton Marshall Story

Alachlor 1072 1162 1323 1020 1107
Atrazine 33,669 30,547 41,517 32,030 34,745
Azoxystrobin 129 515 138 143 136
Bifenthrin 230 271 275 225 238
Captan 4 5 5 5 5
Carbaryl – 865 – – –

Carbofuran 282 – 339 254 279
Chlorothalonil 21 – 2 3 23
Chlorpyrifos 352 1727 302 354 331
Clothianidin 1481 1480 1825 1412 1530
Fenhexamide 1 1 1 1 1
Fipronil – – 86 – 72
Fludioxinil 22 25 23 26 24
Fluoxastrobin 55 68 53 57
Glyphosate 135,396 132,439 155,337 140,429 142,045
Hexazinone – 12 – – –

Imidacloprid 315 278 327 359 336
Metalaxyl 49 71 50 55 52
Metolachlora 23,791 16,683 28,296 23,650 24,742
Pendimethalin 1944 1810 2101 2142 2064
Pyraclostrobin 1777 1003 2111 1771 1850
Tebuconazole 44 48 55 42 46
Thiamethoxam 540 832 620 559 566
Trifluralin 4585 6335 4768 5244 4905

a Sum of metolachlor and S-metolachlor.
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500 μL of deionized water. MDLs for AMPA, glyphosate, and glufosinate
in surface water were 20 ng/L (Meyer et al., 2009).

Nutrients, including total nitrogen, total phosphorous, orthophos-
phate, and nitrate/nitrite, were analyzed in filtered and unfiltered
water samples by the National Water Quality Laboratory using
approved methods outlined in Patton and Kryskalla (2003). MDLs for
total nitrogen, total phosphorous, and nitrate/nitrite as nitrogen were
0.05, 0.003, and 0.008 mg/L, respectively. Filtered water samples were
analyzed for dissolved organic carbon (DOC) and total dissolved nitro-
gen (TDN) by high-temperature catalytic combustion using a Shimadzu
TOC-VCNS total organic carbon analyzer (Shimadzu Scientific Instru-
ments, Columbia, Maryland) according to a modified version of United
States Environmental Protection Agency (USEPA) Method 415.3 (Bird
et al., 2003; Potter and Wimsatt, 2005).

2.4.2. Bed sediment samples for pesticides
Bed sediment sampleswere extracted and analyzed for 94 pesticides

and pesticide degradates based on previously published methods
(Smalling et al., 2013a; Hladik and McWayne, 2012). Briefly, wet sedi-
ments (10 g) were spiked with trifluralin-d10, ring-13C-p,p′-DDE and
phenoxy-13C-cis-permethrin (Cambridge Isotopes, Andover, MA, USA)
as recovery surrogates, homogenizedwith sodium sulfate and extracted
using pressurized liquid extraction. Following extraction, extracts were
dried over sodium sulfate, reduced and sulfur was removed by gel per-
meation chromatography. Samples were again reduced to 0.5 mL, split
in half and subjected to two different clean-up methods: 1) 6%
deactivated Florisil for all fungicides and 2) carbon/alumina stacked
SPE cartridges for all herbicides and insecticides. Sample extracts were
analyzed on an Agilent 5975 GC/MS (Santa Clara, California, USA) in EI
mode. Data were collected in SIM mode with each compound having
one quantifier ion and 1–2 qualifier ions. MDLs for all compounds in
ranged from 0.6 to 3.8 μg/kg sediment dry weight (Smalling et al.,
2013a; Hladik and McWayne, 2012).

Bed-sediment samples were analyzed for organic carbon and nitro-
gen content by combustion and thermal conductivity using a Perkin
Elmer CHNS/O elemental analyzer (Perkin Elmer Corporation, Waltham,
Mass.) according to a modified version of USEPA 440.0 (Zimmerman
et al., 2007). Dry, homogenized sediments were combusted at 925 °C
in silver boats after being exposed to concentrated hydrochloric acid
(HCl) fumes in a desiccator for 24 h to remove inorganic carbon. Before
analysis, sediments were dried at 100 °C for 3 h. Acetanilide was used
for instrument calibration. MDLs for carbon and nitrogen were 0.01%.

2.4.3. Tissue samples for pesticides
Whole bodies and livers were extracted and analyzed for 98

pesticides and pesticide degradates based on previously published
methods (Smalling et al., 2013b). Briefly, tissue samples (whole frogs
or livers) were thawed and homogenized with Na2SO4 using a clean,
solvent-rinsed mortar and pestle. Samples were spiked with
trifluralin-d10, ring-13C-p,p′-DDE andphenoxy-13C-cis-permethrin as re-
covery surrogates and extracted with DCM using pressurize liquid ex-
traction. Following extraction, sample extracts were dried over
Na2SO4, reduced to 1 mL and 10% by volume of each raw extract was
allowed to evaporate to a constant weight in a fume hood for gravimet-
ric lipid determination to the nearest 0.001 g using a microbalance. A
majority of the lipid was removed using gel permeation chromatogra-
phy followed by 6% deactivated Florisil previously activated at 550 °C
for 16 h. Prior to analysis, sampleswere reduced to 0.2mL, and a deuter-
ated internal standard was added to each extract. Sample extracts were
analyzed on an Agilent 7890 GC coupled to an Agilent 5975 MS operat-
ing in EI mode. Data for all pesticides were collected in SIM mode with
each compound having one quantifier ion and 1 to 2 qualifier ions.
MDLs for all compounds ranged from 0.5 to 4.2 μg/kg wet weight
(Smalling et al., 2013b).

2.5. Quality control

All sample glassware was hand-washed and rinsed with tap water
followed by acetone and hexane prior to use. All solvents and other re-
agents were American Chemical Society (ACS) grade or better (Thermo
Fisher Scientific). Pesticide standard materials were donated by the
USEPA National Pesticide Repository. Purities ranged from 95% to 99%.

Performance-based quality assurance and quality control included
the parallel analysis of procedural blanks, matrix spikes, and replicates
in 10% of the samples analyzed for each matrix (water, sediment and
tissue). Procedural blanks run with each batch of samples did not
contain detectable levels of pesticides or nutrients. Mean (±standard
deviation) of 13C-atrazine, imidacloprid-d4 and monuron added to
each water sample as recovery surrogates prior to extraction was
105 ± 15%, 78 ± 6%, and 84 ± 8%, respectively. Mean (±standard
deviation) of trifluralin-d10, ring-13C p,p′-DDE and phenoxy-13C-cis-
permethrin added prior to sediment samples extraction as recovery
surrogates was 83 ± 16%, 85 ± 14%, 89 ± 12%, respectively. Mean
(±standard deviation) of trifluralin-d10, ring-13C p,p′-DDE and
phenoxy-13C-cis-permethrin added prior to tissue sample extraction
as recovery surrogates was 92 ± 15%, 101 ± 14%, and 100 ± 18%, re-
spectively. Matrix spikes were analyzed in 10% of the water, sediment
and tissue samples and the recoveries ranged from 70% to 131% (medi-
an of 92%), 61%–129% (median of 93%) and 60% to 129% (median of
85%), respectively. Relative percent difference of all replicate samples
was less than 25% for both water (pesticides and nutrients) and
sediment (pesticides). Water samples were held for no longer than
48 h at 4 °C prior to extraction for all pesticides except glyphosate and
AMPA. Water samples for glyphosate and AMPA were stored frozen at
−20 °C and held for no longer than 1 week prior to derivatization.
Water samples for nutrients and DOC were held for no longer than
1 week at 4 °C prior to analysis. Sediment and tissue for pesticides
were stored frozen at −20 °C and held for no longer than 1 year prior
to extraction.

2.6. Statistical analyses

An alpha level of 0.05 and a 95% confidence interval was used for all
statistical analyses. Because the data was not normally distributed, a
Kruskal–Wallis one-way analysis of variance by ranks was used to
determine if there were significant differences in pesticide, nutrient
and DOC concentrations in water between wetland types and years.
The same test was used to determine if there were significant differ-
ences in pesticide concentrations between, species, wetland type and
years. No statistical tests were conducted on the sediment data because
sample size was small. All non-detections were assigned a value of 1/2
the method detection limit for all statistical tests. Statistical analyses
were performed using R software (R Development Core Team 2013, Vi-
enna Austria).

3. Results and discussion

3.1. Water and sediment quality

Thirty-two pesticides and pesticide degradates were detected in
water samples collected in both 2012 and 2013 from the 6 wetlands
with concentrations ranging from 0.1 to 19 μg/L (Table A1). Atrazine
was detected in all water samples collected in 2012 and 2013 and at
the highest concentration (19 μg/L) relative to the other pesticides
detected (Fig. 2A–B). The most frequently detected pesticides in water
samples were atrazine, metolachlor, and glyphosate (all herbicides),
and AMPA (glyphosate's primary degradate). These three herbicides
were the most heavily used in the study area (Table 2) and have histor-
ically been among the most frequently detected pesticides in surface
and groundwater in the Midwest (Battaglin et al., 2014; Battaglin
et al., 2005; Kolpin et al., 1995). Two neonicotinoid insecticides,
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clothianidin and thiamethoxam, were detected infrequently in 2012
and at concentrations near the MDL (Table A1, Fig. 2C), however in
2013 detection frequencies for clothianidin and thiamethoxam were
45% and 44% respectively, with concentration ranging from 0.002 to
0.04 μg/L (Fig. 2D). Only two studies to date have reported the occur-
rence of neonicotinoids in agricultural wetlands; one in the Canadian
prairie pothole region (Main et al., 2014) and another in playa lakes in
the Southern High Plains of the United States (Anderson et al., 2013).
Although, maximum concentrations reported previously were an
order ofmagnitudehigher than our results, neonicotinoidswere detected
approximately 45% of the time throughout the spring/summer. Similarly,
in a recent study by Hladik et al. (2014), neonicotinoids were reported
frequently (40–100%) in Iowa surface water samples collected between
April and July of 2013. Neonicotinoids are receiving increased scrutiny
because they have been implicated in adversely affecting pollinators
and linked to colony collapse disorder in bees (Spivak et al., 2011;
vanEngelsdorp et al., 2009) but currently potential effects on amphibians
are largely unknown.

To understand if the restored wetlands provided similar habitat
as the reference wetlands and to determine if habitat quality changed
temporally, pesticide concentrations in water samples were compared
by type and by year. Average total pesticide concentrations in water
samples in both 2012 and 2013 were higher in the reference compared
to the restored wetlands but these results were not significant by
wetland type or by year (data not shown). Furthermore, total concen-
trations of fungicides, herbicides and insecticides were compared and

no significant differences in wetland type or year was observed. To at-
tempt to tease out differences in pesticide occurrence betweenwetland
type and year, data from the seven compounds detected in greater than
25% of the samples were further compared. There were no statistically
significant differences in concentrations between wetland types for
these seven compounds, even though average concentrations for all
compounds except AMPA and clothianidin were higher in the reference
wetlands (Fig. 2). The higher concentration observed in the reference
wetlands, although not significant, could be due to differences in source
water (surface run-off vs. subsurface tile drainage) as well as depth.
Concentrations of the neonicotinoid insecticides, clothianidin and
thiamethoxam, and the herbicide metolachlor were higher in 2013
compared to 2012 (p b 0.05) (Fig. 2C–D). These temporal differences
observed for these three water soluble compounds were likely due
to the lack of rain early in the growing season in 2012 compared to
2013.

Fourteen pesticides and three pesticide degradates were detected in
sediment samples with concentrations ranging from 0.05 to 47.5 μg/kg
dry weight (Table A2). Prometon (herbicide) andmetalaxyl (fungicide)
were detectedmost frequently in sediment (Table 3). Due to the limited
number of sediment samples and the high frequency of non-detections,
therewas not enough information to statistically comparewetlands and
years. All water and sediment data were used as a base of comparison
for the frog tissue samples.

County-level pesticide use information for 2011 (Table 2) was the
most recent data available to compare occurrence information with
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use within the study area (Baker and Stone, 2013). Twenty-four of the
34 pesticides detected in water and sediment had county level reported
agricultural use in 2011. The discrepancy between occurrence and use
data could be a result of: 1) changes in pesticide use between 2011
and 2012–2013, 2) limitations to the use datawith regard to the agricul-
tural use of some fungicides as seed treatments, and 3) use of pesticides
for non-agricultural purposes (mosquito control and/or homeowner
use).

Because trends in nutrient concentrations between years and by
wetland type were similar for all constituents and the fact that the
restored wetlands were established to reduce nitrate concentrations
to surface waters, only the results for nitrate (NO3-N) are discussed
(see Table A3 for concentrations of all nutrients measured). Although,
nitrate concentrations varied by year in the restored and reference
wetlands we observed no significant temporal differences in nutrient
concentrations among the wetlands even though rainfall differed
between the two sample years (Fig. 3A). Maximum nutrient

concentrations in both wetland types were observed in the spring
(April and May) of both years. In Iowa, 45–85% of the annual nitrate
loss through subsurface drains typically occurred in the spring and fall
when crops were not growing (Bjorneberg et al., 1996) indicating a po-
tentially higher exposure to both chorus frogs (early breeders) and
leopard frogs that overwinter in the wetlands. With the exception of
one sample, nitrate values in restored wetlands made up between 86
and 105% of the total dissolved nitrogen in the system. On the other
hand nitrate in the reference wetlands was less than 5% of the total dis-
solved nitrogen measured with the exception of 2 samples collected
from Bjorkboda in 2013 where nitrate made up 56 and 79% of the dis-
solved nitrogen present.

Despite the lack of temporal differences, restored wetlands consis-
tently had higher nutrient concentrations compared to the reference
wetlands (p b 0.05) and average nitrate concentrations in the restored
wetlands were an order of magnitude higher than those observed in
the reference wetlands (Fig. 3A). Furthermore, restored wetlands had
significantly lower concentrations of DOC compared to reference

Table 3
Detection frequency (%) for all pesticides detected inwater, sediment and tissue (liver and
whole body) in 2012 and 2013. Compound type and log Kow (Pesticide Properties Data-
base, 2014) are also reported.

Compound Type log Kow
a Detection frequency (%)

Water
(N = 33)

Sediment
(N = 18)

Tissue
(N = 59)

3,4-DCA D NA 6 nd 2
3,5-DCA D NA 6 nd nd
Alachlor H 3.09 nd 11 8
AMPA D na 64 na na
Atrazine H 2.7 100 nd nd
Azinphos methyl oxon D na nd nd 8
Azoxystrobin F 2.5 27 nd nd
Bifenthrin I 7.3 nd 39 20
Captan F 2.5 3 nd 10
Carbaryl I 2.39 6 nd nd
Carbofuran I 1.8 nd 11 12
Chlorothalonil F 2.94 6 nd 2
Chlorpyrifos I 4.7 3 nd nd
Chlorpyrifos oxon D na nd 28 2
Clothianidin I 0.905 45 na na
S-ethyl
dipropylthiocarbamate
(EPTC)

H 3.2 3 6 nd

Fenbuconazole F 3.79 3 nd 7
Fenhexamide F 3.51 9 17 5
Fipronil I 3.75 nd nd 12
Fipronil desulfinyl D na 3 nd 10
Fludioxinil F 4.12 nd 22 nd
Fluoxastrobin F 2.86 3 6 24
Flusilazole F 3.87 12 nd nd
Glyphosate H −3.2 64 na na
Hexazinone H 1.17 3 nd nd
Imazalil F 2.56 9 nd 12
Imidacloprid I 0.57 6 na na
Metalaxyl F 1.65 21 44 19
Metolachlor H 3.4 73 28 24
Pentachloronitrobenzene D na 3 nd nd
Pendimethalin H 5.2 6 nd 5
Prometon H 2.91 3 61 nd
Pyraclostrobin F 3.99 3 22 41
Pyrimethanil F 2.84 21 6 nd
Resmethrin I 5.43 24 nd nd
Tebuconazole F 3.7 3 nd nd
Thiamethoxam I −0.13 27 na na
Trifluralin H 5.27 6 nd 17
Triticonazole F 3.29 nd 6 nd
Zoxamide F 3.76 6 11 nd
p,p′-DDD D 6.0 nd 28 3
p,p′-DDE D 6.51 nd 61 36
p,p′-DDT I 6.91 nd nd 29

D = degradate; F = fungicide, H = herbicide; I = insecticide.
na = not applicable, nd = not detected, DCA = dichloroaniline.

a Pesticide Properties Database, 2014; http://sitem.herts.ac.uk/aeru/ppdb/en/
index.htm.
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wetlands (Fig. 3B). This outcome is expected and reflects the differences
in water sources (surface run-off vs. subsurface tile drainage) between
the two wetland types. The restored wetlands were designed to receive
tile drainagewaterwith high nutrient concentrations from surrounding
agricultural fields to reduce nutrient exports to surface water. In the
Midwest, tile drainage tends to have lower DOC compared to run-off
(Royer et al., 2007) which mirrors the observed differences in DOC
between the restored and reference wetlands.

3.2. Occurrence of pesticides in amphibians

Seventeen pesticides including eight fungicides, four herbicides and
five insecticides as well as four pesticide degradates (Table 3) were
detected in tissue samples (liver and whole frogs) collected in 2012
and 2013. Concentrations in the liver samples collected in 2012 ranged
from 0.1 to 1500 μg/kg wet weight (Table A4) while concentrations in
whole frogs collected in 2013 ranged from0.08 to 470 μg/kgwetweight
(Table A5). Of the compounds detected in both tissue types, four pesti-
cides including two fungicides (fluoxastrobin and pyraclostrobin),
one herbicide (metolachlor) and one insecticide (bifenthrin) were
detected frequently (N20% of the time)withmedian detectable concen-
trations ranging from 0.5 to 163 μg/kg wet weight and maximum con-
centrations ranging from 10 to 1500 μg/kg wet weight. Two
fungicides, pyraclostrobin and tebuconazole, were first reported in
adult chorus frogs collected from remote locations in California's Sierra
Nevada Mountains (Smalling et al., 2013b) but this is the first study to
document up to eight different fungicides in tissues collected in a single
study. The detection of these compounds in the environment corre-
sponds with county level use data; however this is the first study to
date to document their occurrence in tissue. Currently, limited informa-
tion is available on the bioaccumulation and effects of many of these
compounds, particularly fungicides, in amphibians. The legacy pesticide
p,p′-DDT and its highly persistent and bioaccumulative metabolite
p,p′-DDE were detected in 36% and 29% of all samples collected
(Table 3). Although banned in the United States in 1972, DDT and its
degradates persist in the environment and are biologically available
for uptake by wildlife (Pereira et al., 1996). Median concentrations of
DDT and DDE were 5.3 and 16.7 μg/kg wet weight, respectively and
were similar to those observed in Blanchard cricket frogs from Ohio in
the late 1990s (Russell et al., 2002). On the other hand, DDE concentra-
tions observed in the current study were twice as high as total organo-
chlorine concentrations in green frogs from southwestern Michigan
where limited deformities were observed (Gilliland et al., 2001).

Thirty two compounds were detected in water, 17 in sediment and
22 in tissue (Table 3). Of the 22 compounds detected in tissue, 80% of
the compounds were also detected in either water and/or sediment
but in only a few cases did the compounds detected in the habitat at a
particular site correspond to the compounds observed in the tissue.
From a landscape perspective, many of the water soluble herbicides
(atrazine) were detected frequently in water and less frequently in
sediment and tissues, whereas several more hydrophobic compounds
(DDE, pyraclostrobin) were detected predominantly in sediment and
more frequently in tissues (Table 3). Wetland sediment can be a sink
for hydrophobic contaminants and our results support previous work
documenting the bioaccumulation of agrochemicals in amphibians
(Smalling et al., 2013b; Fellers et al., 2004). Frogs are exposed to pesti-
cides in both the aquatic and terrestrial environments and in many
cases wetland habitats where they are captured do not completely ex-
plain their contaminant body burdens. However, in an agricultural land-
scape, habitat does seem to be one indicator of exposure to amphibian
populations compared to more remote locations where there is
no direct source of pesticides to the habitat (Smalling et al., 2013b).
More complete knowledge on the movement of frogs throughout the
landscape aswell as the uptake and bioaccumulation of pesticides is nec-
essary to help further prioritize research on the effects of frequently de-
tected pesticides at environmentally relevant concentrations.

In 2012, both chorus and leopard frogs were collected from 2 and 4
of the wetlands, respectively. In 2013, chorus frogs were collected from
all 6 wetlands. The liver was originally selected as the tissue to analyze
because it has the potential to retain pesticides and other contaminants
taken up through feeding. However, because amphibian skin is particu-
larly permeable, and because their skin is consistently exposed to either
water or the substrate, we usedwhole bodies for tissue analyses in 2013
to incorporate dermal diffusion as another possible bioaccumulation
pathway. Due to the nature of the frog tissue data, species differences
were investigated using 2012 results and wetland types were investi-
gated using 2013 results.

Eleven pesticides were detected in the livers from chorus frogs in
2012 and concentrations ranged from 5.0 to 327 μg/kg wet weight
(Table A4). Twelve pesticides were detected in the livers from leopard
frogs in 2012, and concentrations ranged from 0.1 to 1500 μg/kg
(Table A4). Of the livers sampled in 2012, only 2 of the 4 sites had
corresponding liver samples from both species. To qualitatively com-
pare species, we chose the four compounds measured in greater than
20% of the samples. Concentrations of several more persistent com-
pounds, fluoxastrobin, pyraclostrobin and p,p′-DDE, occurred at higher
concentrations in leopard frogs compared to chorus frogswhile, average
concentrations ofmetolachlor, a relatively hydrophilic herbicide detect-
ed frequently in the water samples, were similar between the two spe-
cies (Fig. 4). For example, DDE was detected in 53% of the leopard frog
livers analyzed but in only 10% of the chorus frog livers. DDE is hydro-
phobic, known to persist in agricultural sediments (Ding et al., 2010;
Pereira et al., 1996) and was also detected in 61% of the sediment sam-
ples. Differences in concentrations between the two species could be a
function of their life histories (i.e. overwintering behavior, home range
anddietary preferences). Leopard frogsmaybemore susceptible to con-
taminants since they tend to overwinter within the wetland buried in
shallow sediment deep enough to avoid freezing, whereas chorus
frogs overwinter in logs and other burrows away from the wetland
(Dodd, 2013). Many of the fungicides detected in frog tissues are con-
sidered to be moderately persistent in sediment with half-lives of up
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to 184 days (Pesticide Properties Database, 2014) increasing the poten-
tial for exposure to leopard frogs during overwintering. To assess spe-
cies level impacts at the field scale, more studies are needed to better
understand susceptibility to pesticide mixtures and how different life
histories relate to an animals' exposure to these contaminants.

There was no significant difference in whole body pesticide concen-
trations between the two wetland types in adult chorus frogs collected
in 2013. Sixteen pesticides were detected at least once in chorus frogs
from the restored wetlands with concentrations ranging from 0.1 to
234 μg/kg wet weight (Fig. 5, Table A5). Fourteen pesticides were
detected at least once in chorus frogs from the reference wetlands
with concentrations ranging from 0.1 to 470 μg/kg wet weight (Fig. 5,
Table A5). In an agricultural landscape, amphibians are breeding during
the crop growing season, are likely moving between the wetlands, are
present in agricultural fields during planting and pesticide application,
and thusmay be bioaccumulating a variety of pesticides in their tissues.
The wetlands are a source of pesticides to amphibians but it is unclear if
they are the only source, particularly for adults. Chorus frogs tend to re-
main relatively close to their natal wetland, with home-ranges of only
200 m (Dodd, 2013) but still have the potential to bioaccumulate pesti-
cides from limited terrestrial sources, while leopard frogs generally
travel further afield. Contaminants persisting in amphibian habitats
can impact amphibians and their prey beyond the growing season and
potentially throughout the year. To better understand bioaccumulation
of pesticides in frogs from wetlands, more targeted sampling is neces-
sary paying close attention to larval amphibians whose only source
of pesticides is the wetland itself. Although laboratory mesocosm stud-
ies are a useful tool for understanding of acute and chronic effects of
pesticides (single compounds or simple mixtures) and other stressors
(nutrients and disease) on test organisms, it is very difficult to replicate
complex field conditions in the laboratory with native species. In addi-
tion, information on the movements of adult amphibians, especially
during the spring and summer when pesticide use is highest, would
be useful.

3.3. Potential impacts to amphibians

Amphibians are of particular toxicological and ecological importance
because they bridge the gap between the aquatic and terrestrial land-
scape and are sensitive to both pesticides and environmental changes
(Hopkins, 2007). A wide variety of pesticides were detected in water,
sediment and tissues collected (Tables A1 and A3–A5) including several
fungicides (some previously unreported). Previous studies have focused
on the effects of the herbicides glyphosate and atrazine (Mann et al.,
2009; Hayes et al., 2003; Relyea, 2005); the insecticides carbaryl, chlor-
pyrifos, diazinon and endosulfan (Relyea and Mills, 2001; Sparling
and Fellers, 2009) and the fungicides azoxystrobin, propiconazole,
pyraclostrobin and trifloxystrobin (Belden et al., 2010; Hartman et al.,
2014). In most cases, agrochemicals in high doses have direct lethal
effects on amphibians but these concentrations are not typically
measured in the environment. More often, sub-lethal concentrations
of pesticide are detected in complex mixtures in wetlands (i.e., breeding
sites), but even these sub-lethal concentrations can cause changes in
reproduction, immune response, physiology, morphology and behavior
(Hayes et al., 2006, Buck et al., 2012). Atrazine, for example, has the po-
tential to act as an endocrine disruptor in amphibians causing immuno-
suppression at 21 μg/L (Brodkin et al., 2007) and reproductive
abnormalities at concentrations ranging from 0.1 to 6.7 μg/L (Hayes
et al., 2003). Northern leopard frogs across the upper Midwestern
United States in areas of intense row crop agriculture may experience
varying degrees of sexual disruption due to exposure to a combination
of pesticides and nutrients (Hayes et al., 2003; McDaniel et al., 2008). At-
razine concentrations in all wetlands ranged from 0.07 to 19 μg/L
(Fig. 2A–B), and the median concentrations in 2012 and 2013 were 0.2
and 0.1 μg/L, respectively. In 2012, up to 25 amphibians (5 from each
site) were submitted to the USGS NWHC for gross histopathology. One
male leopard frog collected from the referencewetland, Bjorkboda (max-
imumatrazine concentration19 μg/L), showed incidence of intersex (data
not shown). Atrazine acting alone or in combinationwith other pesticides
as well as nutrients has the potential to affect wetland breeding amphib-
ians negatively in agricultural areas like Iowa's Des Moines Lobe.

Although, a causal link between pesticide exposure and disease
outbreaks has not been identified in the laboratory or in the field
(Paetowet al., 2012; Rohr et al., 2013), it is still an intriguing relationship
worth continued investigations. Pesticides have the potential to increase
susceptibility (Mann et al., 2009)while elevated nutrient concentrations
have the potential to increase the incidence of disease in amphibian
populations (Johnson et al., 2007). On the other hand, studies have
documented the relationship between pesticides and susceptibility to
infections by trematodes (Rohr et al., 2008). These parasitic infections
have the potential to negatively impact populations causing
malformations (Reeves et al., 2013) which can lead to impaired mobili-
ty, decreased food intake, and an increased susceptibility to predators
(Blaustein and Johnson, 2003). These studies suggest that through
suppression of the immune system, agrochemicals can also indirectly
contribute to population declines by facilitating mortality or altering
adult fitness (i.e. increasing infection rates or reducing growth and
development). Amphibian populations may be at an increased risk of
parasitic infections in restored wetlands that are receiving water from
tile drainage systems, and therefore experiencing higher nitrogen
concentrations than in the referencewetlands.Maximumdissolvednitro-
gen concentrations in our study were approximately 40 mg/L in the re-
stored wetlands, composed primarily of nitrate (Fig. 3), however, these
concentrations were below the chronic toxicity reported by Hecnar
(1995) of approximately 100 mg/L NO3-N for leopard and chorus frogs.

In conclusion, except for nitrogen, we observed no differences in
water or sediment quality between restored and reference wetlands
indicating that, from a pesticide standpoint, restored wetlands provide
similar habitat for amphibians as the reference wetlands. Pesticides
and pesticide degradates occurred frequently in water and sediment
and were bioaccumulated by the adult frogs sampled in this study.
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Amphibians residing and breeding in both restored and reference wet-
lands in an agricultural landscape are exposed to a wide variety of con-
taminants throughout their lifecycle and the potential impacts of these
environmental mixtures are unknown. Also, quantifying the relation-
ship between habitat quality (such as pesticide and nutrient levels)
and the prevalence of disease and parasites in both restored and refer-
ence wetlands are needed to manage quality habitat for amphibians.
Furthermore, understanding and documenting the quality of the habitat
available for amphibians will help prioritize research necessary to deci-
pher the effects of pesticides, nutrients, habitat loss/degradation and
other potential stressors on the long term viability and management
of native amphibian populations in an agricultural landscape.

Supplemental data associated with the article can be found, in the
online version, at PANGAEA. Supplementary data associated with this
article can be found, in the online version, at doi.http://dx.doi.org/10.
1016/j.scitotenv.2014.08.114.
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