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Introduction
There is no universally accepted dose response model for risk 

assessment of low level exposures to potentially toxic substances, mainly 
because there is no consensus on presence or absence of a threshold 
below which no adverse effects can be assumed to occur. The issue is 
readily apparent in carcinogenic risk assessment. The dose-response 
model for carcinogenic risk assessment depends on absence or presence 
of genotoxic potential [1]. Non-genotoxic carcinogens (hormones, 
tumor promoters, TCDD as examples) are assumed to be characterized 
by a “conventional” dose–response relationship which allows derivation 
of a no-observed-adverse-effect-level (NOAEL), and an insertion of 
an uncertainty (or safety) factor permits the derivation of permissible 
exposure levels at which no relevant human cancer risks are anticipated 
[2]. A far more stringent dose-response model was widely adopted for 
genotoxic carcinogens.

The Genetics Panel of the U.S. National Academy of Sciences’ 
Committee on Biological Effects of Atomic Radiation (BEAR) 
recommended the linear non-threshold (LNT) dose–response model 
in 1956, abandoning the threshold dose–response for genetic risk 
assessments [3]. This recommendation was adopted by the Atomic 
Energy Commission for estimates of the cancer risk from radioactive 
fallout [4]. The point of departure is the assertion that the dose-
response relationship for radiation-induced mutations is linear [5]. The 
NAS BEAR Committee Genetics Panel recommendation was quickly 
generalized to include somatic cells for cancer risk assessment and 
later was instrumental in the adoption of linearity for carcinogen risk 
assessment by the U. S. Environmental Protection Agency [6,7]. It was 
assumed that if “one hit” could cause a mutation and eventually result 
in cancer, then any exposure level could be associated with a finite 
cancer probability. The cancer risk assessment procedures adopted by 
the European Union scientific committee on occupational exposure 
limits (SCOEL) reserve the LNT dose-response model only for DNA 
reactive, tumour initiating genotoxic carcinogens, e.g., alkylating 
chemicals (vinyl chloride, 4-aminobiphenyl, diethylnitrosamine, 
acetaminofluorene, aflatoxin B1) or ionizing radiation [8]. SCOEL does, 
however, also recognize genotoxic carcinogens with a practical threshold 
(formaldehyde, vinyl acetate), and health-based exposure limits may 
then be based on an established NOAEL [8]. The LNT dose-response 
model has also been challenged by several authors who hypothesized 
potential thresholds and protective mechanisms throughout the process 
from initial DNA damage induction to tumor formation [9-13]. A 

sequential order of genome protection during carcinogenesis where 
genotoxicant scavenging, cellular efflux, DNA repair, elimination of 
damaged cells by apoptosis, autophagy, silencing by DNA damage-
triggered replicative senescence, and finally, elimination of transformed 
(premalignant) cells by the immune system are thought to be 
responsible for a threshold in tumor formation. Within this context, 
the principle of Threshold of Toxicological Concern (TTC) has been 
developed by Kroes et al. [14]. The TTC approach applies a generic 
threshold for structural alerts of 0.15 μg/person/day (0.0025 μg/kg bw/
day) but excludes high-potency genotoxic substances, such as aflatoxin-
like compounds, N-nitroso-compounds, and azoxy-compounds, from 
consideration [15]. The TTC concept has been used by the US Food 
and Drug Administration (FDA) to establish ‘‘thresholds of regulation’’ 
for indirect food additives as well as by the Joint FAO/WHO Expert 
Committee on Food Additives for flavoring substances. TTC has also 
been proposed for assessment of prenatal developmental toxicity [16], 
and for safety evaluation of cosmetic ingredients, pharmaceutical 
manufacturing operations [17,18] and even for deriving target values 
for drinking water contaminants [19].

The threshold debate was compounded ever further by the 
observation that the neurotoxicity of non-genotoxic chemicals such 
as neonicotinoid insecticides and organic mercury may show dose-
response relationships identical to that of an alkylating N-nitroso 
carcinogen such as diethylnitrosamine [20-23]. The common 
denominator of the dose-response relationship is irreversibility of 
receptor binding and irreversibility of the associated effect [21]. In fact, 
the discovery of the carcinogenicity of dimethylnitrosamine [24] which 
alkylates nucleic acids following enzymic hydroxylation [25], triggered 
the pharmacologist and cancer researcher Hermann Druckrey to put 
this concept to the test. Druckrey and Küpfmuller had hypothesized 
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many years earlier with theoretical approaches to dose-response 
relationships that irreversible receptor binding with an associated 
irreversible effect would lead to reinforcement of the effect by exposure 
time [26] (Table 1).

Druckrey and his associates successfully validated the Druckrey-
Küpfmüller theorem in rat studies with diethylnitrosamine [27] and 
numerous other nitrosamines [28], as reflected in what is now known as 
the Druckrey-Küpfmüller equation:

dtn=constant                     (1)

where d=daily dose and t=exposure time to effect (liver cancer), and 
n=2.3 (diethylnitrosamine)

There is no valid reason to assume a threshold for non-carcinogens 
when their dose – response relationships are identical to that of 
diethylnitrosamine and their mechanisms of action suggest irreversible 
receptor binding associated with irreversible effects. Moreover, there is 
increasing evidence to suggest that the threshold model may seriously 
underestimate actual risks. Five examples of non-carcinogens that may 
not have a threshold are discussed.

Neonicotinoids
Sanchez-Bayo [29] and Tennekes [20] recently demonstrated 

that equation (1) also describes the (neuro)toxicity of neonicotinoid 
insecticides in arthropods. Moreover, the mechanism of action 
also shows similarities with that of alkylating nitrosamines. The 
neonicotinoid insecticides block nicotinic acetylcholine (nACh) 
receptors in the central nervous system of insects [30] which leads to 
irreversible neuronal damage [31]. The affinity of the neonicotinoid 
imidacloprid for the nACh receptor in insects is very high, and, unlike 
the normal neurotransmitter acetylcholine, acetylcholinesterase can not 
remove imidacloprid from the nACh receptor, although this concept 
has recently been disputed [32] in spite of previous assertions [30,31] by 
Bayer experts of irreversible receptor binding. Dissociation, if it occurs 
at all, is bound to be very slow, and cumulative nACh receptor binding 
leading to irreversible neuronal toxicity can be easily envisaged [33].

Due to their environmental properties, neonicotinoids are 
threatening the survival of invertebrates. Several persistent 
neonicotinoids (imidacloprid, clothianidin, thiamethoxam) with 
time-cumulative toxicity to arthropods are prone to leach from soils 
[34], and have been demonstrated to contaminate surface water in 
Europe and North America [34,35]. In the Netherlands, surface water 
contamination with imidacloprid has been demonstrated to correlate 
with decline of macro-invertebrates [36] and insectivorous birds [34,37], 
and entomological surveys in Dutch and German nature reserves have 
revealed a staggering decline of ground beetles and flying insects since 
the introduction of this ubiquitous pesticide in agriculture in the early 
1990s [34,38]. The risks of imidacloprid’s time-cumulative toxicity to 
non-target insects have clearly been underestimated, and a revision of 
risk assessment is imperative. The Druckrey-Küpfmüller equation (1) 

with n ≥ 1 can serve as a dose-response model for risk assessment of 
compounds with time-cumulative toxicity. Carlborg pointed out that 
this equation is implied by a Weibull model for dose-response functions 
in carcinogenesis [39].

Dioxin
Lucier et al. [40] evaluated the effects of dioxins and pointed 

out that most, if not all, of dioxin's effects require interaction with a 
cellular protein, the Ah receptor. It is generally accepted that Ah 
receptor occupancy is linearly related to low cellular concentrations 
of dioxin [40]. Dioxin, like other Ah receptor agonists, induces an 
isoform of UDP-glucuronosyltransferase (UGT-1) by an Ah receptor-
dependent mechanism [41]. This enzyme conjugates thyroxine 
(3,5,3',5'-tetraiodothyronine, T4), leading to its clearance. Metabolism 
of T4 and its consequent depletion from the blood relieves inhibition of 
TSH release from the pituitary by circulating T4 and causes the serum 
TSH concentration to rise, which is generally believed to promote the 
induction of thyroid tumors in rats and mice [41]. The low-dose linear 
responses of TSH and UGT-1 suggest the absence of a threshold for 
dioxin's effects on the thyroid [41].

Dieldrin
Similarly, the dose-response for promotion of liver tumor induction 

in mice by the non-genotoxic insecticide dieldrin was shown to be 
consistent with the absence of a threshold [42]. The accelerated velocity of 
liver tumor formation was shown to be linearly related to dieldrin dose.

Endocrine Disruptors
The absence of a threshold for endocrine disruption has also been 

demonstrated in an experiment concerning the regulation by estrogen 
of sex determination in reptiles [43]. Since endogenous estrogen is 
already above threshold for estrogen-mediated responses there can 
thus be no threshold for responses to exogenous chemicals that act as 
hormone mimics via estrogen receptor mechanisms [44].

Sulfhydryl Reactive Metals
In the case of organic mercury [23], the actual toxicant in the central 

nervous systems (CNS) is thought to be the divalent mercuric ion (Hg2 +) 
which is formed when organic mercury compounds such as methyl- and 
ethylmercury dealkylate. Once organic mercury compounds reach the 
brain tissue and dealkylate, Hg2+ gets trapped in the neurons, as it cannot 
permeate the blood-brain barrier. Hg2+ has electron-sharing facilities 
that can result in formation of covalent attachment to sulfhydryl groups 
of proteins, and binding of mercury species to thiol groups in amino 
acids, intracellular enzymes and structural proteins. It can be envisaged 
that mercury neurotoxicity could result from irreversible binding of 
mercuric ion to sulfhydryl groups of organic macromolecules [23].

Likewise, subtle effects on children’s health of other sulfhydryl-
reactive metals, such as cadmium (Cd), lead (Pb), and arsenic (As), 

Reversibility of 
receptor binding

Receptor binding in relation 
to compound concentration

Reversibility of the 
effect 

Effect in relation to 
receptor binding

Effect in relation 
to compound 
concentration

Dose-response 
characteristics

TR → 0 CR ~ C Tr → 0 E ~ CR E ~ C Dose-dependent
Tr → ∞ E ~ ∫CR dt E ~ ∫ C dt Ct=constant*

TR → ∞ CR ~ ∫ Cdt Tr→ 0 E ~ CR E ~ ∫ C dt Ct=constant
Tr → ∞ E ~ ∫CR dt E ~ ∫ ∫ C dt Reinforced by time

TR is the time constant for the reversibility of receptor binding; Tr is the time constant for the reversibility of the effect; CR is the concentration of bound receptors; C is the 
concentration of the poison at the site of interaction. E=Effect; *known as Haber’s Rule (the product of concentration and time produces a constant effect)

Table 1: Dose-response characteristics according to Druckrey and Küpfmüller [26].
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may not be associated with a threshold either [45-47]. The NRC panel 
concluded that linear models are most appropriate for dose–response 
modeling of mercury’s neurodevelopmental effects in the absence of 
persuasive evidence supporting an alternative functional form [48].

Conclusion
Contrary to widely held belief, a threshold does not follow 

automatically from absence of genotoxic potential. The genotoxicity 
of an alkylating nitrosamine can be viewed as an example of 
irreversible receptor binding (covalent binding to DNA) associated 
with irreversible effects (gene mutations). Similar receptor-mediated 
mechanisms of toxic action are perfectly conceivable. Risk assessments 
should not assume thresholds for noncarcinogens as a matter of 
principle when there is mechanistic evidence of receptor-mediated 
toxicity [49]. If the shape of the dose-response curve conveys a linear 
relationship between receptor occupancy and biological response at 
lower concentrations, a threshold may not exist. This thesis constitutes a 
paradigm shift in a core area of toxicological sciences, but a linear dose-
response relationship cannot and must not be ignored and should be 
point of departure for effective risk management. For such chemicals, 
risk management should be based on the ALARA principle (“as low 
as reasonably achievable”) unless benefits clearly outweigh risks, for 
example with pharmaceuticals for treatment of cancer or other life-
threatening diseases.
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